
Journal of Systems Architecture 167 (2025) 103487

A
1

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier.com/locate/sysarc

Taking a closer look at memory interference effects in

commercial-off-the-shelf multicore SoCsI

Lorenzo Carletti a ,∗, Andrea Serafini a,b, Gianluca Brilli a, Alessandro Capotondi a,
Alessandro Biasci b, Paolo Valente a, Andrea Marongiu a

a University of Modena and Reggio Emilia, Via Campi 213/A, Modena, Italy
b Evidence S.r.l., Via Pietro Nenni 24, Pisa, Italy

A R T I C L E I N F O

Keywords:
Multicore System on Chip
Memory interference
Cache

 A B S T R A C T

Commercial-off-the-shelf (COTS) multicore systems on chip (SoC) represent a cheap and convenient solution
for deploying sophisticated workloads in various application domains. The combination of several CPU cores
and dedicated acceleration units tightly sharing memory and interconnect systems can provide tremendous
peak performance, but also threatens timing predictability due to memory interference. Even when focusing
on main CPU cores only, it has been reported that task slowdown due to memory interference can surpass
10×. Such poorly predictable timing behaviors bar greater adoption of COTS multicore SoCs in the domain
of timing-critical applications, and motivate the wide activity of the research community to study solutions
aimed at mitigating the problem. Understanding worst-case interference patterns on such hardware platforms
is fundamental for building any effective memory interference control mechanism. A common assumption in
the literature is that worst-case interference is generated by (and therefore assessed through) read-intensive
synthetic workloads with 100% cache miss rate. Yet certain real-life workloads exhibit worse slowdown than
what is generated under said assumed worst-case, so we study the interference effects of both synthetic and
real-life benchmarks on different multicore SoCs. Our experiments indicate that cache thrashing causes the
worst interference experienced by real-life benchmarks – due to their different usage of caches – and that
there is no universal worst-case workload for every platform.
1. Introduction

Most modern commercial-off-the-shelf (COTS) multicore systems on
chip (SoCs) rely on high parallelism as a fundamental design paradigm,
enabling high performance while maintaining contained power con-
sumption. These systems typically rely on shared main memory (DRAM)
and cache hierarchy, and as the number of the on-chip compute
units grows contention for these resources intensifies. Under heavy
contention scenarios, this causes the tasks executing on the various
cores to experience decreased bandwidth and – ultimately – increased
execution time (slowdown) [1–3].

The problem has been extensively studied before [4–10], and many
techniques have been proposed to mitigate its effects and to improve

I This work was supported by the European Union under the NextGenerationEU Programme within the Plan ‘‘PNRR - Missione 4 ‘‘Istruzione e Ricerca’’ -
Componente C2 Investimento 1.1 ‘‘Fondo per il Programma Nazionale di Ricerca e Progetti di Rilevante Interesse Nazionale (PRIN)’’ by the Italian Ministry
of University and Research (MUR)’’. Project Title: ‘‘Simplifying Predictable and energy-efficient Acceleration from Cloud to Edge (SPACE)’’, Project code:
202254AM7H, CUP: E53D23007810006, MUR D.D. financing decree n. 959, 30th June 2023.
∗ Corresponding author.
E-mail addresses: lorenzo.carletti@unimore.it (L. Carletti), andrea.serafini@unimore.it (A. Serafini), gianluca.brilli@unimore.it (G. Brilli),

alessandro.capotondi@unimore.it (A. Capotondi), a.biasci@evidence.eu.com (A. Biasci), paolo.valente@unimore.it (P. Valente), andrea.marongiu@unimore.it
(A. Marongiu).

timing predictability [3,11–16]. For any timing analysis or interference
mitigation solution to be effective it is important to build on top of
models derived from an in-depth understanding of the timing effects
that memory interference produces on a given hardware platform.
Thus, a detailed characterization of the hardware is the very first
step that must be taken when devising solutions to improve its timing
predictability.

Synthetic benchmarking methodologies are widely and effectively
adopted to this aim [17,18], implementing ad-hoc memory access
patterns that stress specific levels of the memory hierarchy. When
using synthetic benchmarking, it is often assumed that the worst-
case slowdowns are those experienced by read-only or write-only,
https://doi.org/10.1016/j.sysarc.2025.103487
Received 7 February 2025; Received in revised form 24 April 2025; Accepted 1 Ju
vailable online 4 July 2025
383-7621/© 2025 The Authors. Published by Elsevier B.V. This is an open access a
ne 2025

rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/sysarc
https://www.elsevier.com/locate/sysarc
https://orcid.org/0009-0004-3803-2398
mailto:lorenzo.carletti@unimore.it
mailto:andrea.serafini@unimore.it
mailto:gianluca.brilli@unimore.it
mailto:alessandro.capotondi@unimore.it
mailto:a.biasci@evidence.eu.com
mailto:paolo.valente@unimore.it
mailto:andrea.marongiu@unimore.it
https://doi.org/10.1016/j.sysarc.2025.103487
https://doi.org/10.1016/j.sysarc.2025.103487
http://creativecommons.org/licenses/by/4.0/

L. Carletti et al. Journal of Systems Architecture 167 (2025) 103487
memory-intensive workloads that completely bypass the cache hierar-
chy (i.e., that generate 100% miss rate). The intuition is that when
using this type of workload for both the core under test (i.e. the
core executing the workload that is subject to the slowdown being
measured) and the cores that are generating interference the system is
subject to maximum contention (worst-case scenario) [5,6,10,19–21].
However, the massive degree of parallelism and architectural optimiza-
tions present in modern multicore CPUs may jeopardize this simplistic
assumption, leading to inaccurate timing analysis and, in turn, incorrect
memory interference mitigation techniques. This motivated a more in-
depth study of the memory interference effects that parallel tasks are
subject to when running simultaneously on the CPU cores of modern
multicore SoCs.

In this work, we provide a detailed characterization of the memory
interference effects generated at various levels of the shared mem-
ory hierarchy by different synthetic and real-world workloads [22]
co-scheduled on CPU cores. The evaluation, performed on two repre-
sentative hardware platforms: Nvidia TX2 and Xilinx ZU9EG, indicates
that there is no universal worst-case memory access pattern, as the ef-
fects induced and suffered slowdowns strongly vary with the hardware.
Moreover, the evaluation shows that memory interference happens
differently at each level of the shared memory hierarchy, including
DRAM-interference effects, cache trashing, and all the way down to
micro-architectural phenomena.

The rest of the paper is organized as follows: Section 2 introduces
the background knowledge underlying the problem of memory inter-
ference, the state-of-the-art techniques used for its characterization and
the reference hardware platforms used in the experiments. Section 3
extends the characterization to real benchmarks, showing that the read-
only synthetic benchmark – typically considered as the worst-case in
terms of sensitivity to memory interference – is not the workload that
experiences the worst slowdown. Here we also provide examples of how
using the wrong synthetic benchmark for interference generation may
lead to a wrong characterization of the worst-case scenario. Section 4
explains with additional experiments how cache effects can cause
certain less memory intensive tasks to be more subject to interference
than others. Section 5 describes related work to ours, positioning our
contribution with respect to the vast existing literature. Section 6
provides a discussion on the obtained results and concluding remarks.

2. Background

Fig. 1 shows a generic block diagram of a modern commercial off-
the-shelf (COTS) multicore SoC (MSoC), highlighting its three main
architectural blocks: CPU complex, Accelerator complex, and Main Mem-
ory.

The CPU complex is typically composed of multiple cores organized
in homogeneous clusters, internally sharing part of the memory hierar-
chy and other interconnect resources. Most modern MSoC also include
one or more heavily data-parallel accelerators (GPU, FPGA, DSP) which
typically also share main memory with the CPU complex. The main
memory is usually implemented as Dynamic Random Access Memory
(DRAM), and is accessed via a scalable main system interconnect (e.g., a
crossbar, or a network-on-chip). As the DRAM access latency spans
hundreds of CPU cycles, the CPU complex of a modern MSoC relies on
multi-level cache hierarchies to lower the average duration of load/-
store operations. Each CPU core has private L1 data and instruction
caches; all the cores in a cluster share a unified L2 cache; multiple
clusters share unified L3 cache. The depth and complexity of the cache
hierarchy varies with the number of cores and their clustering. SoCs
with a single cluster typically do not require L3 cache, whereas multi-
cluster SoCs might feature a fourth level in the cache hierarchy. The
cache block at the deepest level is indicated as the Last Level Cache
(LLC). Load/store operations that miss in the LLC are routed to the main
memory. An analogous organization of the internal memory hierarchy
is typically found also inside the Accelerator complex.
2
Fig. 1. Shared memory SoC template.

The main interconnect and main memory controller are designed
in such a way that in the common case there is sufficient avail-
able bandwidth (BW = bytes/second) to satisfy the read/write requests
coming from the various actors (CPU cores, accelerator cores, DMAs,
etc.). When several actors (or, in the worst case, all of them) access
the DRAM simultaneously the requested bandwidth might surpass the
available bandwidth. In such a case, the DRAM is unable to serve the
requests coming from all the actors at the speed they are issued. This
phenomenon is commonly referred to as DRAM bandwidth saturation.
This is an important concept for our work: when a task encounters load-
/store operations that miss in the LLC while the DRAM bandwidth is
saturated, such operations are delayed. The task perceives this effect as
a reduced experienced bandwidth (a given amount of data is transferred
between the hosting CPU and the DRAM in a longer-than-usual amount
of time), which ultimately manifests as a slowdown in execution time.

It must be noted that memory interference does not only manifest
at the DRAM level. Private L1 caches are immune to interference, as
they are not shared among cores. L2 or lower-level caches shared by
more than one core (from one or multiple clusters) may be subject
to interference. Tasks can experience slowdown because of cache in-
terference for different reasons. Loads/stores from different cores and
targeting different addresses can be mapped on the same shared cache
line. This causes the latest request to evict the previous content of the
line. Consecutive accesses to the evicted lines will result in a cache miss,
hence the slowdown. More specifically, in case of a load operation the
miss implies a lookup and a refill for the target address in lower (and
slower) levels of the cache hierarchy. In case of a store operation the
miss still implies the lookup, but the slowdown experienced by the task
varies based on the write miss policy. If writethrough is adopted the task
experiencing the miss is stalled until the store is completed. If writeback
is adopted the store to the DRAM is delayed until the next eviction. The
slowdown for the writeback is thus experienced by the task that causes
this next eviction.

Most modern COTS MSoC adhere to the described architectural tem-
plate, featuring both FPGA-based and GPU-based accelerators. Repre-
sentative examples of such MSOCs are Xilinx Zynq Ultrascale+ (ZU9EG)
and Versal ACAP, as well as Nvidia Tegra SoCs like Jetson TX2 and Xavier
AGX.

Table 1 reports the number and the size of the clusters featured
by each of these MSoCs, along with the size of their LLC and their
write-miss caching policy (writeback for all of them). We conducted a

L. Carletti et al. Journal of Systems Architecture 167 (2025) 103487
Table 1
Relevant hardware information for our reference platforms.
 Xilinx ZU9EG Versal ACAP VCK190 Nvidia TX2 Xavier AGX
 CPU cores per cluster 4 2 4 2
 Number of clusters 1 1 1 4
 Last Level Cache size 1 MB 1 MB 2 MB 4 MB
 Cache write-miss policy writeback writeback writeback writeback
Fig. 2. DRAM bandwidth reached by the three traffic types on our reference SoCs.
preliminary experiment with each of these platforms, aimed at studying
DRAM bandwidth saturation under three different types of traffic (for
more details on these workload we refer the reader to the next section):

• READ_MISS: traffic composed of only load operations that miss in
LLC, that trigger only cache refills.

• WRITE_MISS, traffic composed of only store operations that miss
in LLC. Consecutive stores target non-contiguous addresses which
are (a multiple of) the cache line size far apart. This traffic triggers
both cache refills (because the store only writes part of the cache
line, the rest needs to be read from memory) and writebacks
(upon cache line eviction).

• MEMSET : traffic composed of only store operations that miss in
LLC. Consecutive stores target contiguous addresses, thus entire
cache lines are written consecutively. This not only avoids the
cache refills from WRITE_MISS traffic, but bypasses the cache
altogether, enabling the read-allocate mode [23]. When this mode
is activated, the full set of stores is posted into a store buffer, that
is asynchronously copied to DRAM, and the contents of the LLC
remain unchanged. For the rest of the paper, we refer to this type
of traffic as write-no-allocate traffic (a name which better reflects
the type of memory accesses generated).

Fig. 2 shows the results of the experiment. The X axis shows the
number of cores involved and the Y axis the cumulative bandwidth
requested (average of 20 executions), for each of the three traffic types.
For the Nvidia TX2 and Xilinx ZU9EG platforms it is possible to observe
bandwidth saturation effects in the plots, as the requested bandwidth
3
reaches a plateau for a number of active cores smaller than the total.
Depending on the hardware, different traffic types can either reach
saturation with different configurations (e.g., MEMSET in Xilinx ZU9EG
reaches saturation with one single core, whereas the other two traffic
types saturate as more cores are involved), or exhibit distinct saturation
bandwidths for different traffic types (e.g., MEMSET in Nvidia TX2 has
a much higher maximum bandwidth than the other traffic types). It
also appears clear that the workload which generates the highest
bandwidth is different for the various platforms.

On the other hand, the Versal ACAP VCK190 and the Xavier AGX
platforms do not exhibit the same clear saturation effects, nor they
highlight other interesting phenomenon. The reason for this is that the
overall bandwidth is overdimensioned for the total number of cores and
number of cores per cluster. We believe however that Nvidia TX2 and
Xilinx ZU9EG clustering are more representative of what future SoCs
will implement when scaling to larger core counts. This intuition is
confirmed by looking at how NVIDIA organized the architecture of Orin
AGX [24], the successor of Xavier AGX . Here both the 12-core and 8-
core variants of the SoC organize their cores in 3 and 2 clusters that
closely resemble the ones found in Nvidia TX2 and Xilinx ZU9EG.

For this reason in the remainder of the paper we just report our find-
ing on this two platforms, omitting what we observed on Versal ACAP
VCK190 and the Xavier AGX , that does not add to the conclusion. Also,
in the remainder of the paper we focus on interference effects generated
when the CPU complex alone is active. The study of CPU/accelerator
interference falls beyond the scope of this paper, and is left as future
work.

L. Carletti et al.

2

1

1

Journal of Systems Architecture 167 (2025) 103487
2.1. Workloads

In this subsection, the workloads used in all the experiments in this
paper are described.

2.1.1. Synthetic benchmarking
Synthetic memory-access generators are commonly used to produce

controlled interference and measure resulting slowdowns [5,6,10,19–
21]. They allow a wide spectrum of access patterns to be easily gen-
erated. In general, a synthetic benchmark [17,18] typically has the
following parameters (which can be configurable or preset depending
on how the benchmark is designed):

1. Type of memory operation (𝑡), including read (i.e., loads),
write (i.e., stores), r/w (both loads and stores). In particular, we
differentiate between full cache line stores (𝑤, used by workloads
of the MEMSET type, where stores at contiguous addresses are
issued in a loop which fills the cache line) and non-full cache
line stores (𝑤𝑠, used by workloads of the WRITE_MISS type,
represented by a single store) due to the significantly different
behavior they present;

2. Number of memory and CPU operations (𝑚𝑜𝑝𝑠, 𝑐𝑜𝑝𝑠). The
synthetic benchmark issues mops memory operations of the spec-
ified type t in a loop. Between one memory operation and the
next, cops compute operations (or simple no-ops) are executed.
This allows to control memory-to-compute ratio and, in turn,
to generate more or less interfering (or sensitive-to-interference)
workloads.

3. Address stride (𝑠𝑡). The distance between two consecutive mem-
ory accesses (i.e., the stride). It heavily influences the cache
miss rate (i.e., the sensitivity to interference), as certain specific
stride configurations may be chosen to avoid the effects of line
prefetching, depending on what the benchmark wants to assess;

4. Access pattern (𝑝). Most real-life workloads tend to generate
sequential access patterns — which consist of constant, small
strides [19,25], which the DRAM controller is optimized to han-
dle faster. In contrast, a random access pattern is one where
the stride is updated randomly for any two consecutive accesses,
which the DRAM controller takes longer to handle. Note that
very long constant strides behave as random patterns [19,25];

5. Memory footprint (𝑓𝑝), the footprint of the data structure ac-
cessed by the benchmark heavily influences cache behavior, as
data that fits entirely in cache is bound to generate a high
number of hits, as opposed to data that exceeds the size of the
cache.

 Algorithm 1 describes the synthetic benchmark we designed for this
paper [26]. The algorithm takes as inputs: (i) the base address addr of
the data structure on which the memory operations are performed; (ii)
the type 𝑡 and number 𝑚𝑜𝑝𝑠 of memory operations to be performed
on the data structure; (iii) the number 𝑐𝑜𝑝𝑠 of compute operations to
be done after every memory operation; (iv) the stride 𝑠𝑡 between the
addresses of any two consecutive memory operations; (v) the global
footprint 𝑓𝑝 of the data structure. The main procedure consists of a loop
that iterates 𝑚𝑜𝑝𝑠 times. At each iteration it first executes the designated
memory operation (specified by the type parameter 𝑡) at target address
𝑎𝑑𝑑𝑟+𝑜𝑓𝑓𝑠𝑒𝑡. After that, the 𝑜𝑓𝑓𝑠𝑒𝑡 is incremented according to the stride
parameter 𝑠𝑡. Finally, a loop that executes 𝑐𝑜𝑝𝑠 compute operations is
executed.

Algorithm 2 describes the actual synthetic benchmarks READ_MISS,
WRITE_MISS and MEMSET . The three synthetic benchmarks call 𝑟𝑒𝑝𝑠
times inside of a loop SYNTH_BENCH, with preset parameters. These
are the same for all the benchmarks, aside from the type parameter 𝑡,
which is different between the three (READ_MISS has 𝑡 = 𝑟, WRITE_MISS
has 𝑡 = 𝑤𝑠, and MEMSET has 𝑡 = 𝑤).
4
Algorithm 1: Synthetic Benchmark. LINE_SIZE is a const repre-
senting the LLC line size on the target.
1 Function SYNTH_BENCH(addr,t,mops,cops,st,𝑓𝑝)

Input: 𝑎𝑑𝑑𝑟: read or write base address, 𝑡: access type
(r/w/rw), 𝑚𝑜𝑝𝑠: number of memory operations, 𝑐𝑜𝑝𝑠:
number of cpu operations, 𝑠𝑡: access stride, 𝑓𝑝:
memory footprint

2 𝑖 ← 0;
3 𝑜𝑓𝑓𝑠𝑒𝑡 ← 0;
4 while 𝑖 < 𝑚𝑜𝑝𝑠 do
5 if 𝑡 = 𝑟 then
6 load(𝑎𝑑𝑑𝑟 + 𝑜𝑓𝑓𝑠𝑒𝑡)
7 end
8 if 𝑡 = 𝑤 then
9 for 𝑖 ← 0 to 𝐿𝐼𝑁𝐸_𝑆𝐼𝑍𝐸 by 4 do
10 store(𝑎𝑑𝑑𝑟 + 𝑜𝑓𝑓𝑠𝑒𝑡 + 𝑖)
11 end
12 end
13 if 𝑡 = 𝑤𝑠 then
14 store(𝑎𝑑𝑑𝑟 + 𝑜𝑓𝑓𝑠𝑒𝑡)
15 end
16 𝑜𝑓𝑓𝑠𝑒𝑡 ← (𝑜𝑓𝑓𝑠𝑒𝑡 + 𝑠𝑡) mod 𝑓𝑝;
17 𝑖 ← 𝑖 + 1;
18 𝑗 ← 0; while 𝑗 < 𝑐𝑜𝑝𝑠 do
19 𝑗 ← 𝑗 + 1;
20 end
1 end

Algorithm 2: Different synthetic benchmarks configurations
used for the evaluation.
1 Function READ_MISS(𝑠𝑟𝑐, 𝑟𝑒𝑝𝑠)

Input: 𝑠𝑟𝑐: read base address
2 for 𝑖 ← 𝑟𝑒𝑝𝑠 do
3 SYNTH_BENCH(𝑠𝑟𝑐, 𝑟, 𝑚𝑜𝑝𝑠, 𝑐𝑜𝑝𝑠, 𝑠𝑡, 𝑓𝑝)
4 end
5 Function WRITE_MISS(𝑑𝑠𝑡, 𝑟𝑒𝑝𝑠)

Input: 𝑑𝑠𝑡: write base address
6 for 𝑖 ← 𝑟𝑒𝑝𝑠 do
7 SYNTH_BENCH(𝑑𝑠𝑡, 𝑤𝑠, 𝑚𝑜𝑝𝑠, 𝑐𝑜𝑝𝑠, 𝑠𝑡, 𝑓𝑝)
8 end
9 Function MEMSET(𝑑𝑠𝑡, 𝑟𝑒𝑝𝑠)

Input: 𝑑𝑠𝑡: write base address
0 for 𝑖 ← 𝑟𝑒𝑝𝑠 do
11 SYNTH_BENCH(𝑑𝑠𝑡, 𝑤,𝑚𝑜𝑝𝑠, 𝑐𝑜𝑝𝑠, 𝑠𝑡, 𝑓𝑝)
2 end

Many works in the state of the art [5,6,10,19–21] have operated
under the assumption that the worst-case access can be modeled by: (i)
choosing 𝑡 = 𝑟 or 𝑡 = 𝑤𝑠 (i.e., instantiating READ_MISS or WRITE_MISS
traffic types); (ii) making the stride an integer multiple of the LLC line
size with a sequential access pattern; (iii) choosing a footprint bigger than
the full LLC size, as it removes the possibility of one of the cache levels
intercepting the memory accesses with cache hits when the algorithm
executes in a loop, thus causing a 100% miss rate (meaning DRAM
operations). In this paper we further study the problem of worst-case
interference characterization, and we show that there are a number of
effects which are not correctly captured by the synthetic benchmark
generated using what was previously thought as the worst-case access
model. This is important, as it means that the real worst-case interfer-
ence can have a much higher impact on timing than previous work was
based on.

L. Carletti et al. Journal of Systems Architecture 167 (2025) 103487
Fig. 3. Example of how the slowdown of multiple Polybench benchmarks combines to
create the area of one category in Fig. 4.

2.1.2. The Polybench-ACC benchmark suite
Synthetic benchmarks enable precise control of the generated mem-

ory traffic and, presumably, interference. However, the memory access
patterns generated by synthetic benchmarks are limited to a subset
of the ones generated by real-world workloads, and specific memory
interference effects may not be triggered by them. For this reason,
we also use real-life benchmarks in this paper, the Polybench-ACC
benchmark suite [22]. The suite is a collection of compute kernels
that are commonly found inside larger programs belonging to different
categories: data mining, stencils, medley and linear-algebra kernels and
solvers. In our experimental setup we compile the suite for single-
core execution with the default dataset size. For most benchmarks that
corresponds to the STANDARD_DATASET size. For benchmark cor-
relation the default setting corresponds to EXTRALARGE_DATASET.
For convolution-3d and convolution-2d to LARGE_DATASET.

3. Interference analysis

In the interference analysis, we measure the execution time of a
task under test running on one of the cores, with the interfering tasks
executing on the remaining cores. The task under test is either one
of our synthetic benchmarks or one of the Polybench benchmarks
(see Section 2), while the interfering tasks are one of our synthetic
benchmarks. We chose to include the Polybench as task under test in our
interference analysis to better represent how real-life workloads may be
subject to interference on our target platforms (Xilinx ZU9EG and Nvidia
TX2). Interfering tasks access memory at a controllable intensity by
changing the ratio between 𝑀𝑜𝑝𝑠 and 𝐶𝑜𝑝𝑠 (see Section 2). By tuning
this ratio, we regulate the percentage of total memory bandwidth that
interfering tasks are allowed to consume. We report this percentage in
the plot on the X axis as throttling parameter THR%.

Figs. 4(a), 4(b), 4(c) and 4(d), 4(e), 4(f) present the interference
analysis results obtained using the Nvidia TX2 and the Xilinx ZU9EG,
respectively. There is one subplot for each interference traffic type
(READ_MISS, WRITE_MISS, MEMSET). The experiments were run 10
times for each benchmark due to the high amount of time some of the
Polybench require to run, especially when subject to interference. The
results we obtained had really low standard deviation when compared
to the mean (since all the results were within 5% of the average), as
such, the average of the measured slowdown was plotted for all the
experiments in Fig. 4. The slowdown curve of the synthetic benchmarks
running as task under test are shown as black curves, whereas the
slowdown curve of the 30 Polybench benchmarks are presented in
the form of areas (i.e., grouped), with a label indicating how many
Polybench benchmarks fall in one specific category. The perimeter of
the areas is obtained by merging the highest and lowest values of
all the slowdown curves of the Polybench which are part a specific
category as the THR% changes (with the special case of the area
5
becoming a line when only one benchmark fits in a category). This
process is shown with an example in Fig. 3. The categories in Fig. 4 are:
(i) ABOVE: those benchmarks that suffer more interference than the
READ_MISS synthetic benchmark throughout the entire THR% range;
(ii) CROSSING: those benchmarks that suffer more interference than
the READ_MISS synthetic benchmark only for some THR% configura-
tions; (iii) BELOW: those benchmarks that suffer less interference than
the READ_MISS synthetic benchmark. READ_MISS (black curve with
blue circular points) was used as the divider between categories as it
was assumed by previous works [5,19–21] to be the task under test
most sensitive to memory interference. If that assumption were true,
no benchmarks should fall into the ABOVE or CROSSING categories in
any part of Fig. 4. However, one can quickly notice that is not the case.
In general, it can be observed that the READ_MISS synthetic benchmark
is not the task most subject to interference in any of the subplots. Not
only that, but in all subplots some of the Polybench are more subject
to interference than any of the synthetic benchmarks.

As an example, subplots 4(a) and 4(d) present the slowdown per-
ceived by real and synthetic benchmarks when running in the presence
of READ_MISS interfering tasks, an interference configuration which
some literature [5,20,21] considered to be the worst-case one. Subplot
4(a) shows that, for the Nvidia TX2 platform, two Polybench fall into
the ABOVE category, while twelve belong to the CROSSING category.
On the other hand, subplot 4(d) shows that, for the Xilinx ZU9EG
platform, four Polybench fall within the ABOVE category, and two
belong to the CROSSING one. Note that these results are not captured
by the assumption made in the previously cited works.

Subplots 4(b) and 4(c) show that the worst-case interference on
Nvidia TX2 is generated by WRITE_MISS (Subplot 4(b)), which causes
R/W traffic due to the cache-line update operation. This result is in
line with how other literature [6,10,19] conducts interference analysis.
However, subplots 4(e) and 4(f) show that on the Xilinx ZU9EG hard-
ware the worst-case interference traffic type is MEMSET (Subplot 4(f)),
which causes slowdowns of up to ≈12×. This is a type of interference
which is not often investigated, even among literature which is more
thorough and checks for WRITE_MISS traffic.

3.1. Analysis summary

The results presented in this Section demonstrate that on the Xilinx
ZU9EG and the Nvidia TX2, READ_MISS is neither the workload causing
the highest amount of interference (highlighted by subplots 4(b) and
4(f)) nor the one most sensitive to memory interference (as seen in all
subplots of Fig. 4). In fact, the results are highly platform-dependent,
with the two analyzed MSoCs having different worst-case interfering
tasks (WRITE_MISS on the Nvidia TX2 and MEMSET on the Xilinx
ZU9EG). Fig. 4, in general, highlights the need to do proper memory
interference characterization, to determine the actual worst-case: it is
not possible to make generalizations. Finally, the results also show
that some Polybench are more subject to interference than any of
the synthetic benchmarks. As the synthetic benchmarks are also the
interfering tasks, and they interact with the DRAM due to the way they
were constructed, this may seem counterintuitive.

In the next section, we explore why specific real-world benchmarks
are more sensitive to memory interference than synthetic ones.

4. Last level cache thrashing

Further investigation is required to understand why some real-world
workloads suffer from more interference than synthetic ones — which
are modeled to capture the worst-case behaviors. When conducting in-
terference analysis, it can be misleading to exclusively focus on DRAM
interference. Cache events can also play a pivotal role in execution
time increase. In this section, we thoroughly analyze and quantify the
effects of cache interference, providing a correlation between the traffic

L. Carletti et al. Journal of Systems Architecture 167 (2025) 103487
Fig. 4. Nvidia TX2 (a,b,c), Xilinx ZU9EG (d,e,f). Time increase for Synthetic and Polybench benchmarks. Note: each plot has a different maximum y axis value.
generated by the interfering tasks, and their effect on the memory perfor-
mance of our evaluation setup. Cache interference has been addressed
in the literature using techniques like shared cache partitioning [27,28].
In this section, we also expose a micro-architectural cache interference
effect reported on the Xilinx ZU9EG that may not be solved through the
previously mentioned techniques.

For this evaluation, we profile the execution of the READ_MISS syn-
thetic benchmark acting as a task under test , under different interference
configurations. We focus on this benchmark because it is the only one
that generates regular cache memory traffic. Therefore, it can be easily
tracked and analyzed. The other benchmarks (i.e., WRITE_MISS and
MEMSET), generate a memory traffic that either pollutes the cache
(i.e., WRITE_MISS), making it difficult to analyze the cache effects, or
does not access the cache memory at all (i.e., MEMSET , see Section 2).
During each test run, we keep track of the LLC refills using Performance
Monitoring Units (PMUs) [29]. Since the two hardware platforms that
we use have different memory configurations (i.e., 1 MB and 2 MB
LLC cache size for the Xilinx ZU9EG and the Nvidia TX2, respectively),
we use two different sets of memory footprint (i.e., 𝑓𝑝) for the task
under test in the two setups. For the Xilinx ZU9EG, we use buffer sizes
of 512 KB, 768 KB, 2048 KB, and 16384 KB. For the Nvidia TX2,
we use 1024 KB, 1536 KB, 4096 KB, and 32768 KB buffers. Overall,
the idea is to use memory footprints that are respectively smaller and
larger than the LLC size in both setups, to emphasize the effects of the
LLC cache behavior in the results. The interference is generated using
our synthetic benchmarks – one for each remaining core – configured
with a fixed 𝑓𝑝 of 16 MB, which is way larger than the LLC size of
both platforms. This ensures that the interfering tasks cause interference
at each level of the memory hierarchy. For each type of memory
6
interference, we repeat the execution of the experiment, with varying
values of the THR% parameter (see Section 3) of the interfering tasks.
These configurations of the synthetic benchmarks require a really low
amount of time to run. As such, the results reported in this section are
the average of the measurements taken by doing 1000 runs for each
value of THR% (in general, the results were within 5% of the average).

Figs. 5 and 6 present the results of the experiments for the Nvidia
TX2 and the Xilinx ZU9EG, respectively. In particular, Figs. 5(a), 5(b),
5(c) and 6(a), 6(b), 6(c) present the slowdown of the task under test ,
while 5(d), 5(e), 5(f) and 6(d), 6(e), 6(f) present the LLC refill results.
In the figures, each subplot presents the results as a function of both the
type of interference generated by the interfering tasks (i.e., READ_MISS,
WRITE_MISS and MEMSET) and the THR% parameter configuration. In
the following sections, we discuss the results for each configuration of
the interfering tasks.

4.1. READ_MISS interfered by READ_MISS

Subplots 5(a), 5(d), and 6(a), 6(d) show the results obtained by
using READ_MISS as interfering tasks. As expected, the results heavily
depend on the 𝑓𝑝 configuration of the task under test . If the 𝑓𝑝 of the
task under test is larger than the LLC size, each load operation performed
triggers an LLC refill, regardless of the THR% setting used for the
interfering tasks. This is highlighted in Fig. 5(d) for 𝑓𝑝 configurations
of 4096K and 32768K, and Fig. 6(d) for configurations of 2048K
and 16384K. As a result, the number of LLC-to-DRAM transactions is
constant, and the slowdown shown in Figs. 5(a) and 6(a) is entirely
caused by DRAM interference. We notice that this phenomenon leads
to a 3× slowdown on the Nvidia TX2 board and to a 1.5× slowdown on

L. Carletti et al. Journal of Systems Architecture 167 (2025) 103487
Fig. 5. Nvidia TX2. Slowdown and LLC refills triggered by the task under test as a function of the interfering tasks configuration.
the Xilinx ZU9EG. On the other hand, when 𝑓𝑝 is smaller than the LLC
size and the interfering tasks are muted (i.e., 0% THR%), the memory
buffer used by the task under test is entirely cached, and the benchmark
generates a negligible amount of LLC refills. This is reported in Fig.
5(a) for 𝑓𝑝 configurations of 1024K and 1536K, and in Fig. 6(a) for
configurations of 512K and 768K. As the THR% grows, we observe
an increasing number of LLC refills due to the cache space contention
generated by the interfering tasks. In this case, the slowdown is caused
by both the DRAM interference and the LLC eviction, and therefore, it
is much more severe. Ultimately, the results report a slowdown factor
of 11× on the Nvidia TX2 platform (Fig. 5(a)), and 4.5× on the Xilinx
ZU9EG (Fig. 6(a)).

4.2. READ_MISS interfered by WRITE_MISS

Figs. 5(b), 5(e), 6(b), and 6(e) report the slowdown and LLC refill
results obtained using WRITE_MISS as interfering tasks. In this con-
figuration, the results reported in Figs. 5(e) and 6(e) show that the
LLC refills are comparable to the ones registered in the READ_MISS
interfered by READ_MISS configuration (Figs. 5(d) and 6(d)). However,
the slowdown results (Figs. 5(b), 6(b)) are sensibly higher, especially
on the Xilinx ZU9EG platform. To explain such a difference we repeat
the benchmark execution using PMUs to profile the number of LLC
writebacks performed by the task under test .
7
The LLC writeback results are reported in Figs. 7 and 8. In case
of READ_MISS interference (Figs. 7(a), 8(a)), the number of LLC write-
backs is less than 103 for each 𝑓𝑝 configuration that is used. In the
same configuration, the number of LLC refills (see Figs. 5(d), 6(d))
reaches 105 − 106. Therefore, the number of LLC writebacks represents
less than 1% of the total number of LLC-to-DRAM transactions, and can
be considered as negligible. This is because the traffic generated by the
task under test and the interfering tasks is read-only, and no cache line is
written back to DRAM memory. On the other hand, the number of LLC
writebacks registered in the READ_MISS interfered by WRITE_MISS con-
figuration (Figs. 7(b), 8(b)) grows accordingly to the THR% parameter
of the interfering tasks. This happens because both platforms implement
a writeback caching policy, therefore, dirty cached data is evicted to
memory only when the CPU cores try to access the corresponding cache
line, as explained in Section 2. The task under test , generating read-only
traffic, triggers a number of LLC refills that evict (i.e., write back to
DRAM) the cache lines dirtied by the interfering tasks. Ultimately, this
leads to an increase in the number of LLC writebacks transactions over
the worst-case registered by the READ_MISS interfered by READ_MISS
configuration, and therefore to a higher slowdown in the benchmark
execution time. This configuration represents the worst-case slowdown
scenario for the Nvidia TX2 platform, as the reported slowdown reaches
up to a factor 12.5×. Whereas, on the Xilinx ZU9EG, we register a 10×
increase in execution time.

L. Carletti et al. Journal of Systems Architecture 167 (2025) 103487
Fig. 6. Xilinx ZU9EG. Slowdown and LLC refills triggered by the task under test as a function of the interfering tasks configuration.
4.3. READ_MISS interfered by MEMSET

As explained in Section 2, the traffic generated by MEMSET in-
terfering tasks is 100% write-no-allocate. This write-only traffic directly
writes out to DRAM without causing any cache LLC refills/writebacks.
The results obtained by executing the task under test with this type of
interfering tasks, reported in Figs. 5(c), 5(f), 7(c), and 6(c), 6(f), 8(c)
demonstrate this aspect. In fact, the impact of the THR% parameter
on the number of LLC refills/writebacks is almost null or negligible
if compared to other configurations (see Sections Section 4.1, 4.2).
Nevertheless, the slowdown results are very different between the two
setups. On the Nvidia TX2 (Fig. 5(c)), the results register a slowdown
factor of 2.5× when the 𝑓𝑝 is larger than the LLC size, whereas no
slowdown can be noticed if the 𝑓𝑝 is smaller than the LLC size. Note
that this is the expected result since the interfering tasks do not affect
the behavior of the cache and therefore do not create cache space
contention. On the Xilinx ZU9EG (Fig. 6(c)), we obtain a 2.5×-3.5×
slowdown when the 𝑓𝑝 is larger than the LLC size, which is comparable
to the one obtained using WRITE_MISS interference, and an unexpected
42× slowdown when the 𝑓𝑝 is smaller than the LLC size. To understand
the cause of this slowdown, we better analyze the memory architecture
of the Xilinx ZU9EG.
8
The Xilinx ZU9EG implements a non-blocking cache: a cache mem-
ory that can simultaneously handle CPU requests and linefills/write-
backs [30]. In this cache, a store buffer temporarily holds writeback
operations that exit the cache memory (evictions). This way, the cache
can continue serving CPU requests while completing writebacks. On
the Xilinx ZU9EG, the store buffer is also used to hold and merge write-
no-allocate transactions. By merging multiple transactions into a single
memory burst, the write-no-allocate traffic suffers less per-transaction
overhead, enjoying a higher memory bandwidth [30]. However, the
store buffer has a limit: if it becomes full (e.g., saturated by requests),
the cache blocks and no longer accepts CPU requests [31]. This causes
the CPU cores to stall until the entries in the store buffer are freed
(written back to memory).

Cache blocking can happen in the READ_MISS interfered by MEM-
SET scenario: the write-no-allocate traffic generated by the MEMSET
interfering tasks can saturate the store buffer, causing the LLC cache to
block. This, in turn, can cause the CPU core executing the READ_MISS
task to stall. To demonstrate this phenomenon, we repeated the ex-
ecution of the task under test (𝑓𝑝 = 512 KB) both in isolation and
co-scheduled with MEMSET interfering tasks. During the execution, we
used PMUs to profile the execution of both the task under test and
the interfering tasks. For the task under test , we configured PMUs to
track the CPU stalls because of load misses event (PMU event number

L. Carletti et al.

Fig. 7. Nvidia TX2. LLC writebacks triggered by the task under test as a function of the interfering tasks configuration.

Fig. 8. Xilinx ZU9EG. LLC writebacks triggered by the task under test as a function of the interfering tasks configuration.

Fig. 9. READ_MISS (𝑓𝑝 = 512 KB) interfered by MEMSET . The CPU STALLS because of load miss (Subplot 9(a)) are measured on the task under test . The WRITE OPERATIONS that
stall the pipeline because the store buffer is full (Subplot 9(b)) are measured on the interfering tasks.

Journal of Systems Architecture 167 (2025) 103487

9

L. Carletti et al. Journal of Systems Architecture 167 (2025) 103487
0xE7). For the interfering tasks, we configured the PMUs to track the
WRITE OPERATIONS that stall the pipeline because the store buffer is
full event (PMU event number 0xC7). The results are reported in Fig.
9. In the figure, the subplots present the results as a function of the
THR% parameter of the interfering tasks. As shown in Subplot 9(b),
when the THR% parameter changes from 90% to 100%, the number
of WRITE OPERATIONS that stall the pipeline because the store buffer is
full grows from ≈ 106 to ≈ 109. Accordingly, the number of CPU stalls
because of load misses (Subplot 9(a)) grows from ≈ 105 to ≈ 107. This
result indicates that when the THR% parameter reaches 100%, the store
buffer gets saturated by the memory requests of the MEMSET interfering
tasks, causing the CPU core executing the task under test to stall, and
ultimately, the observed slowdown.

4.4. Analysis summary

This analysis allows us to draw several results: (i) First, we observe
that cache-bound benchmarks (i.e., 𝑓𝑝 < LLC size) suffer from greater
slowdown when compared to the DRAM-bound ones (see Section 4.1).
This phenomenon demonstrates that, on our platforms, the cache con-
tention problem is more severe than DRAM interference. (ii) Second,
we observe that the performance of the task under test is not only
influenced by DRAM interference and cache space contention, but also
by additional interference from cache maintenance operations (i.e., LLC
writebacks, see Section 4.2). This has proven to be a major source of
slowdown on our setup, particularly on Xilinx ZU9EG. (iii) Lastly, we
note that the combination of different memory access patterns can gen-
erate a slowdown which is not exclusively caused by interference but
also by architectural phenomena, which act as hardware bottlenecks in
the memory hierarchy (see Section 4.3).

5. Related work

Many papers address the problem of memory interference in the
context of multicore SoCs [1,2,4–8,21,25,32–34]. Typically, they fall
into one of three main categories: platform-specific memory charac-
terization, DRAM maximum interference estimate and mitigation, and
cache access predictability.
Platform-specific memory characterization. The problem of identifying
interference effects in modern MSoCs is very relevant, and many works
have analyzed the interference characteristics on different types of
COTS MSoCs (mainly FPGA-based SoC, GP-GPU-based SoC). Bansal
et al. [25] propose a deep characterization of the memory systems
present on the ZU9EG, with some focus on the interference which the
CPU cores can cause to each other. Manev et al. [32] tried to analyze
the memory performance and requirements of accelerators on ZU9EG
and ZU3EG. Capodieci et al. [21] highlight how on Nvidia’s platforms,
instead, DRAM performance has evolved over the years, with the rapid
increase in GPU performance.

In this paper, we also performed extensive tests on different embed-
ded multicore SoCs from different vendors and with different features
to characterize various possible interference effects.
DRAM maximum interference estimate and mitigation. Memory interfer-
ence in MSoC has been a significant research focus since these systems
were introduced. Several studies have concentrated on estimating the
Worst-Case Execution Time (WCET) using various analytical methods.
Andreozzi et al. [12] employed mixed integer linear programming
(MILP) to provide a rigorous estimation. Other works have also utilized
synthetic loads. Radojkovi et al. [5] focused on singular load types.
Nowotsch et al. [6] instead combined different types of memory access
patterns, such as WRITE_MISS and READ_MISS. Hyoseung et al. [11] in-
stead aimed at defining boundaries for memory-based interference from
CPU cores within MSoC. In addressing the mitigation and management
of memory access and interference, various research efforts have ex-
plored scheduling mechanisms to reduce conflicts when multiple cores
10
access shared hardware resources such as DRAM [13,14,16,19,35].
Together, these approaches represent a range of strategies for reducing
memory contention and ensuring more predictable performance in
MSoC.

Cache access predictability. In addition to managing memory access and
interference, significant research has focused on the control and man-
agement of shared cache interference in MSoC systems. Dugo et al. [36]
leverage cache locking and partitioning to reduce non-determinism and
contention in lower-level caches, which improves timing performance.
Kaushik et al. [37,38] address cache coherence through specialized
protocols. They propose a predictable modify-share-invalid (MSI) pro-
tocol and a modify-exclusive-share-invalid (MESI) protocol, which use
specific design invariants to ensure predictability and minimize cache
interference.

Other researchers focus on analyzing cache usage fairness. Seong-
beom et al. [39] present a scheme which demonstrates that fair cache
usage directly correlates with improved execution time, providing a
different perspective on managing cache resources effectively.

Valsan et al. [8] present a different cache mitigation technique,
tested on COTS multicore systems, which provides better guarantees
than the classic cache partitioning for their tested workloads.

In summary, while various strategies exist to handle shared cache
interference, their effectiveness can vary significantly based on the
architecture and workload. As demonstrated by the characterization
in this paper, careful attention must be paid to choosing the proper
techniques to ensure predictable and efficient performance in multicore
SoC environments.
Proper worst-case interference estimate. There are some examples of
underestimating the worst-case in the literature which we already cited.

Capodieci et al. [21] measure the effect of memory interference
on Nvidia’s platforms (including on Nvidia TX2). In their experiments
they use READ_MISS to measure interference effects as the task under
test , which was proven as the task not most subject to interference in
Section 3. This means that the worst-case when it comes to DRAM-
based interference is underestimated. Cavicchioli et al. [20] present
the technique of Controlled Memory Request Injection (CMRI) and
evaluate its effectiveness with synthetic benchmarks run on the Nvidia
TX2. However, they try to model worst-case interference by using
READ_MISS as both the task under test and the interfering tasks, which
means that the worst-case is underestimated, as the results in Section 3
highlight. Brilli et al. [19] present a work on modern HeSoC memory
regulation and control, which expands on the work from Cavicchioli
et al. [20]. They evaluate CMRI on both the Nvidia TX2 and Xilinx
ZU9EG. The previous analysis is expanded with WRITE_MISS as another
possible interfering task. However, in their experiments they: (i) do
not take into consideration MEMSET as a interfering task (important
for the Xilinx ZU9EG); (ii) still only consider READ_MISS as the most
interfered task under test . This means that they also underestimated the
worst-case interference with which to compare their mitigation tech-
nique. Hyoseung et al. [10] try to bound memory interference delay in
COTS MSoCs. During the evaluation, they make use of the STREAM
benchmark [40] as the interfering task. The STREAM benchmark at
its highest level of memory intensity acts like a memcpy, which has
a memory access pattern very similar to WRITE_MISS. While this is
fine for the case examined in the paper, on a platform like the Xilinx
ZU9EG using this benchmark would not expose the interference effects
which happen with MEMSET as the interfering task. Nowotsch et al. [6]
in their maximum DRAM interference estimation only investigate the
interference of WRITE_MISS and READ_MISS traffic, meaning that their
methodology may not find the actual worst-case on some platforms,
as we have demonstrated in this paper. Radojkovi et al. [5] present
WCET bound estimates which also make use of READ_MISS as both the
task under test and the interfering task, without proper checks for other
traffic types. This leads to the possibility of a WCET bound estimate
significantly lower than the real WCET, as we observed for both the
Nvidia TX2 and the Xilinx ZU9EG.

L. Carletti et al. Journal of Systems Architecture 167 (2025) 103487
6. Discussion and conclusion

In this work, we presented a thorough analysis of DRAM and intra-
cluster interference effects on two representative multicore SoCs: the
Nvidia TX2 and the Xilinx ZU9EG. We show that DRAM-bound read-
only and write-only traffics generated by synthetic workloads do not
represent worst-case in terms of sensitivity to memory interference, that
different workloads generate different levels of interference and that
there is no single traffic type which generates the highest amount of
interference on all platforms. To find the worst-case for the hardware
under analysis, an in-depth interference characterization is necessary.
We highlighted that the impact of interference depends on the memory
hierarchy level where it occurs: we observed up to 3× slowdown due
to DRAM-interference, up to 13× slowdown due to the combination of
LLC space contention and DRAM interference, and a 42× slowdown due
to an architectural bottleneck in the memory hierarchy of the Xilinx
ZU9EG. With these high slowdowns we present, we explain in this
paper why, counterintuitively, some tasks which do not make particular
use of the main memory under normal circumstances can be subject
to more slowdown than synthetic benchmarks when subject to intra-
cluster interference. There are multiple ways in which current and
future works may be affected by our findings and from the methodology
we used in this paper.

Memory interference mitigation techniques [14,16,41,42] may be
able to make use of the characterization and findings introduced in this
paper to create a more precise interference analysis for their hardware,
more aware of the limitations of their platforms. This improved analysis
could then be used to better estimate the interference that a platform
is subject to at runtime. With a more precise interference estimate,
these mitigation techniques would then be able to more precisely
limit the bandwidth of non-critical tasks, instead of taking conserva-
tive approaches which exclusively prioritize the timing guarantees of
time critical tasks. This would in turn reduce bandwidth regulation
inefficiency, leading to reduced waste of hardware resources [20].

Similar considerations apply to those approaches that rely on WCET
estimation to derive formal schedulability analysis [12,43,44]. The
more thorough interference characterization could lead to better WCET
boundaries in these papers, leading to less conservative results. This
applies to approaches based on both formal analysis [44] and heuris-
tics [12].

The methodology applied in this work can help study interference
caused by intra-cluster and inter-cluster phenomena. Systematic ap-
proaches to perform memory interference characterization [45] can
build upon the characterization presented in this paper to evaluate a
wider spectrum of architectural phenomena than they already do.

Finally, our own ongoing work is built upon this methodology: by
first creating a thorough interference characterization of the platform
under consideration using the approach presented in this paper, it
is possible to estimate the level of bandwidth regulation needed to
reduce the slowdown of a critical task exactly to a precise quality
of service (QoS) value, with very low error. This allows quick and
precise bandwidth regulation, which in turn leads to proper throttling
of non-critical tasks. Thanks to this approach based on the interference
characterization, we observe very low hardware under-utilization in
our experiments, while still reducing the slowdown to the expected QoS
value.

CRediT authorship contribution statement

Lorenzo Carletti: Writing – original draft, Visualization, Valida-
tion, Software, Investigation, Formal analysis, Data curation. Andrea
Serafini: Writing – original draft, Visualization, Validation, Software,
Investigation, Formal analysis, Data curation. Gianluca Brilli: Writ-
ing – original draft, Visualization, Validation, Software, Resources,
Investigation, Formal analysis, Data curation. Alessandro Capotondi:
Writing – review & editing, Supervision, Resources. Alessandro Biasci:
11
Writing – review & editing, Supervision, Resources, Project admin-
istration. Paolo Valente: Writing – review & editing, Supervision,
Resources, Methodology, Conceptualization. Andrea Marongiu: Writ-
ing – review & editing, Supervision, Resources, Project administration,
Methodology, Funding acquisition, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

References

[1] M. Mattheeuws, B. Forsberg, A. Kurth, L. Benini, Analyzing memory interference
of FPGA accelerators on multicore hosts in heterogeneous reconfigurable SoCs,
in: Design, Automation & Test in Europe Conference & Exhibition, DATE, 2021,
pp. 1152–1155, http://dx.doi.org/10.23919/DATE51398.2021.9473925.

[2] G. Brilli, A. Capotondi, P. Burgio, A. Marongiu, Understanding and mitigating
memory interference in FPGA-based hesocs, in: Design, Automation & Test in
Europe Conference & Exhibition, DATE, 2022, pp. 1335–1340, http://dx.doi.org/
10.23919/DATE54114.2022.9774768.

[3] Y.J. Lin, C.L. Yang, J.W. Huang, T.J. Lin, C.W. Hsueh, N. Chang, System-
level performance and power optimization for MPSoC: A memory access-aware
approach, ACM Trans. Embed. Comput. Syst. 14 (1) (2015) http://dx.doi.org/
10.1145/2656339.

[4] J. Boudjadar, J.H. Kim, S. Nadjm-Tehrani, Performance-aware scheduling of mul-
ticore time-critical systems, in: ACM/IEEE International Conference on Formal
Methods and Models for System Design, 2016, pp. 105–114, http://dx.doi.org/
10.1109/MEMCOD.2016.7797753.

[5] P. Radojkovic, S. Girbal, A. Grasset, E. Quiñones, S. Yehia, F. Cazorla, On the
evaluation of the impact of shared resources in multithreaded COTS processors
in time-critical environments, TACO 8 (2012) 34, http://dx.doi.org/10.1145/
2086696.2086713.

[6] J. Nowotsch, M. Paulitsch, Leveraging multi-core computing architectures in
avionics, in: Ninth European Dependable Computing Conference, 2012, pp.
132–143, http://dx.doi.org/10.1109/EDCC.2012.27.

[7] M. Bechtel, H. Yun, Memory-aware denial-of-service attacks on shared cache
in multicore real-time systems, IEEE Trans. Comput. 71 (9) (2022) 2351–2357,
http://dx.doi.org/10.1109/TC.2021.3108044.

[8] P.K. Valsan, H. Yun, F. Farshchi, Taming non-blocking caches to improve
isolation in multicore real-time systems, in: IEEE Real-Time and Embedded
Technology and Applications Symposium, RTAS, 2016, pp. 1–12, http://dx.doi.
org/10.1109/RTAS.2016.7461361.

[9] T. Kloda, G. Gracioli, R. Tabish, R. Mirosanlou, R. Mancuso, R. Pellizzoni,
M. Caccamo, Lazy load scheduling for mixed-criticality applications in het-
erogeneous MPSoCs, ACM Trans. Embed. Comput. Syst. 22 (3) (2023) http:
//dx.doi.org/10.1145/3587694.

[10] H. Kim, D. de Niz, B. Andersson, M. Klein, O. Mutlu, R. Rajkumar, Bounding
memory interference delay in COTS-based multi-core systems, in: 2014 IEEE 19th
Real-Time and Embedded Technology and Applications Symposium, RTAS, 2014,
pp. 145–154, http://dx.doi.org/10.1109/RTAS.2014.6925998.

[11] H. Kim, D. de Niz, B. Andersson, M. Klein, O. Mutlu, R. Rajkumar, Bounding
and reducing memory interference in COTS-based multi-core systems, Real-Time
Syst. 52 (3) (2016) 356–395, http://dx.doi.org/10.1007/s11241-016-9248-1.

[12] M. Andreozzi, A. Frangioni, L. Galli, G. Stea, R. Zippo, A MILP approach to
DRAM access worst-case analysis, Comput. Oper. Res. 143 (C) (2022) http:
//dx.doi.org/10.1016/j.cor.2022.105774.

[13] R. Pellizzoni, E. Betti, S. Bak, G. Yao, J. Criswell, M. Caccamo, R. Kegley, A
predictable execution model for COTS-based embedded systems, in: 17th IEEE
Real-Time and Embedded Technology and Applications Symposium, 2011, pp.
269–279, http://dx.doi.org/10.1109/RTAS.2011.33.

[14] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, L. Sha, MemGuard: Memory
bandwidth reservation system for efficient performance isolation in multi-core
platforms, in: IEEE 19th Real-Time and Embedded Technology and Appli-
cations Symposium, RTAS, 2013, pp. 55–64, http://dx.doi.org/10.1109/RTAS.
2013.6531079.

[15] C. Courtaud, J. Sopena, G. Muller, D. Gracia Pérez, Improving prediction accu-
racy of memory interferences for multicore platforms, in: IEEE Real-Time Systems
Symposium, RTSS, 2019, pp. 246–259, http://dx.doi.org/10.1109/RTSS46320.
2019.00031.

http://dx.doi.org/10.23919/DATE51398.2021.9473925
http://dx.doi.org/10.23919/DATE54114.2022.9774768
http://dx.doi.org/10.23919/DATE54114.2022.9774768
http://dx.doi.org/10.23919/DATE54114.2022.9774768
http://dx.doi.org/10.1145/2656339
http://dx.doi.org/10.1145/2656339
http://dx.doi.org/10.1145/2656339
http://dx.doi.org/10.1109/MEMCOD.2016.7797753
http://dx.doi.org/10.1109/MEMCOD.2016.7797753
http://dx.doi.org/10.1109/MEMCOD.2016.7797753
http://dx.doi.org/10.1145/2086696.2086713
http://dx.doi.org/10.1145/2086696.2086713
http://dx.doi.org/10.1145/2086696.2086713
http://dx.doi.org/10.1109/EDCC.2012.27
http://dx.doi.org/10.1109/TC.2021.3108044
http://dx.doi.org/10.1109/RTAS.2016.7461361
http://dx.doi.org/10.1109/RTAS.2016.7461361
http://dx.doi.org/10.1109/RTAS.2016.7461361
http://dx.doi.org/10.1145/3587694
http://dx.doi.org/10.1145/3587694
http://dx.doi.org/10.1145/3587694
http://dx.doi.org/10.1109/RTAS.2014.6925998
http://dx.doi.org/10.1007/s11241-016-9248-1
http://dx.doi.org/10.1016/j.cor.2022.105774
http://dx.doi.org/10.1016/j.cor.2022.105774
http://dx.doi.org/10.1016/j.cor.2022.105774
http://dx.doi.org/10.1109/RTAS.2011.33
http://dx.doi.org/10.1109/RTAS.2013.6531079
http://dx.doi.org/10.1109/RTAS.2013.6531079
http://dx.doi.org/10.1109/RTAS.2013.6531079
http://dx.doi.org/10.1109/RTSS46320.2019.00031
http://dx.doi.org/10.1109/RTSS46320.2019.00031
http://dx.doi.org/10.1109/RTSS46320.2019.00031

L. Carletti et al. Journal of Systems Architecture 167 (2025) 103487
[16] H. Yun, W. Ali, S. Gondi, S. Biswas, BWLOCK: A dynamic memory access
control framework for soft real-time applications on multicore platforms, IEEE
Trans. Comput. 66 (7) (2017) 1247–1252, http://dx.doi.org/10.1109/TC.2016.
2640961.

[17] A. Ahmed, K. Skadron, Hopscotch: a micro-benchmark suite for memory perfor-
mance evaluation, in: Proceedings of the International Symposium on Memory
Systems, MEMSYS ’19, Association for Computing Machinery, New York, NY,
USA, 2019, pp. 167–172, http://dx.doi.org/10.1145/3357526.3357574.

[18] J. McCalpin, Memory bandwidth and machine balance in high performance
computers, in: IEEE Technical Committee on Computer Architecture Newsletter,
1995, pp. 19–25.

[19] G. Brilli, R. Cavicchioli, M. Solieri, P. Valente, A. Marongiu, Evaluating controlled
memory request injection for efficient bandwidth utilization and predictable
execution in heterogeneous socsf, ACM Trans. Embed. Comput. Syst. 22 (1)
(2022) http://dx.doi.org/10.1145/3548773.

[20] R. Cavicchioli, N. Capodieci, M. Solieri, M. Bertogna, P. Valente, A. Marongiu,
Evaluating controlled memory request injection to counter PREM memory
underutilization, in: Job Scheduling Strategies for Parallel Processing, Springer
International Publishing, Cham, 2020, pp. 85–105, http://dx.doi.org/10.1007/
978-3-030-63171-0_5.

[21] N. Capodieci, R. Cavicchioli, I.S. Olmedo, M. Solieri, M. Bertogna, Contending
memory in heterogeneous socs: Evolution in NVIDIA tegra embedded platforms,
in: 2020 IEEE 26th International Conference on Embedded and Real-Time
Computing Systems and Applications, RTCSA, 2020, pp. 1–10, http://dx.doi.org/
10.1109/RTCSA50079.2020.9203722.

[22] S. Grauer-Gray, L. Xu, R. Searles, S. Ayalasomayajula, J. Cavazos, Auto-tuning
a high-level language targeted to GPU codes, in: Innovative Parallel Computing,
InPar, 2012, pp. 1–10, http://dx.doi.org/10.1109/InPar.2012.6339595.

[23] ARM, Arm cortex-a53 mpcore processor technical reference manual r0p4, 2025,
URL: https://developer.arm.com/documentation/ddi0500/j/ch06s02s05.

[24] NVIDIA, NVIDIA Jetson AGX Orin Series - Technical brief, 2021,
URL: https://www.nvidia.com/content/dam/en-zz/Solutions/gtcf21/jetson-
orin/nvidia-jetson-agx-orin-technical-brief.pdf.

[25] A. Bansal, R. Tabish, G. Gracioli, R. Mancuso, R. Pellizzoni, M. Caccamo,
Evaluating the memory subsystem of a configurable heterogeneous MPSoC,
in: Proceedings of the Operating Systems Platforms for Embedded Real-Time
Applications, 2018.

[26] Carletti, Lorenzo and Brilli Gianluca, SynthMemBench, 2025, URL: https://
github.com/LorenzoCarletti/SynthMemBench.

[27] N. Suzuki, H. Kim, D. de Niz, B. Andersson, L. Wrage, M. Klein, R. Rajkumar,
Coordinated bank and cache coloring for temporal protection of memory ac-
cesses, in: IEEE 16th International Conference on Computational Science and
Engineering, 2013, pp. 685–692, http://dx.doi.org/10.1109/CSE.2013.106.

[28] X. Zhang, S. Dwarkadas, K. Shen, Towards practical page coloring-based multi-
core cache management, in: Proceedings of the 4th ACM European Conference
on Computer Systems, EuroSys ’09, Association for Computing Machinery, New
York, NY, USA, 2009, pp. 89–102, http://dx.doi.org/10.1145/1519065.1519076.

[29] J. Barrera, L. Kosmidis, H. Tabani, E. Mezzetti, J. Abella, M. Fernandez, G.
Bernat, F.J. Cazorla, On the reliability of hardware event monitors in mpsocs
for critical domains, in: Proceedings of the 35th Annual ACM Symposium on
Applied Computing, SAC ’20, Association for Computing Machinery, New York,
NY, USA, 2020, pp. 580–589, http://dx.doi.org/10.1145/3341105.3373955.

[30] AMD, Zynq UltraScale+ device technical reference manual, 2015, URL: https:
//docs.amd.com/v/u/en-US/ug1085-zynq-ultrascale-trm.

[31] M. Bechtel, H. Yun, Denial-of-service attacks on shared cache in multicore:
Analysis and prevention, in: 2019 IEEE Real-Time and Embedded Technology
and Applications Symposium, RTAS, 2019, pp. 357–367, http://dx.doi.org/10.
1109/RTAS.2019.00037.

[32] K. Manev, A. Vaishnav, D. Koch, Unexpected diversity: Quantitative memory
analysis for zynq UltraScale+ systems, in: International Conference on Field-
Programmable Technology, ICFPT, 2019, pp. 179–187, http://dx.doi.org/10.
1109/ICFPT47387.2019.00029.

[33] B. Forsberg, M. Solieri, M. Bertogna, L. Benini, A. Marongiu, The predictable
execution model in practice: Compiling real applications for COTS hardware,
ACM Trans. Embed. Comput. Syst. 20 (5) (2021) http://dx.doi.org/10.1145/
3465370.

[34] M. Hassan, A. Kaushik, H. Patel, Exposing implementation details of embedded
DRAM memory controllers through latency-based analysis, ACM Trans. Embed.
Comput. Syst. 17 (5) (2018) http://dx.doi.org/10.1145/3274281.

[35] J.M. Aceituno, A. Guasque, P. Balbastre, J. Simó, A. Crespo, Hardware resources
contention-aware scheduling of hard real-time multiprocessor systems, J. Syst.
Archit. 118 (2021) http://dx.doi.org/10.1016/j.sysarc.2021.102223.
12
[36] A.T. Aurora Dugo, J.B. Lefoul, F.G. De Magalhaes, D. Assal, G. Nicolescu, Cache
locking content selection algorithms for ARINC-653 compliant RTOS, ACM Trans.
Embed. Comput. Syst. 18 (5s) (2019) http://dx.doi.org/10.1145/3358196.

[37] A.M. Kaushik, M. Hassan, H. Patel, Designing predictable cache coherence
protocols for multi-core real-time systems, IEEE Trans. Comput. 70 (12) (2021)
2098–2111, http://dx.doi.org/10.1109/TC.2020.3037747.

[38] M. Hassan, A.M. Kaushik, H. Patel, Predictable cache coherence for multi-
core real-time systems, in: Proceedings of the IEEE Real-Time and Embedded
Technology and Applications Symposium, RTAS, 2017, pp. 235–246, http://dx.
doi.org/10.1109/RTAS.2017.13.

[39] S. Kim, D. Chandra, Y. Solihin, Fair cache sharing and partitioning in a
chip multiprocessor architecture, in: 13th International Conference on Parallel
Architecture and Compilation Techniques, 2004, pp. 111–122, http://dx.doi.org/
10.1109/PACT.2004.1342546.

[40] J. McCalpin, Sustainable memory bandwidth in current high performance com-
puters, 1995, URL: https://www.cs.virginia.edu/~mccalpin/papers/bandwidth/
node2.html#SECTION00020000000000000000.

[41] A. Zuepke, A. Bastoni, W. Chen, M. Caccamo, R. Mancuso, MemPol: Policing core
memory bandwidth from outside of the cores, in: 2023 IEEE 29th Real-Time and
Embedded Technology and Applications Symposium, RTAS, 2023, pp. 235–248,
http://dx.doi.org/10.1109/RTAS58335.2023.00026.

[42] P. Sohal, R. Tabish, U. Drepper, R. Mancuso, E-WarP: A system-wide framework
for memory bandwidth profiling and management, in: 2020 IEEE Real-Time
Systems Symposium, RTSS, 2020, pp. 345–357, http://dx.doi.org/10.1109/
RTSS49844.2020.00039.

[43] B. Andersson, H. Kim, D.D. Niz, M. Klein, R.R. Rajkumar, J. Lehoczky, Schedu-
lability analysis of tasks with corunner-dependent execution times, ACM Trans.
Embed. Comput. Syst. 17 (3) (2018) http://dx.doi.org/10.1145/3203407.

[44] A. Agrawal, R. Mancuso, R. Pellizzoni, G. Fohler, Analysis of dynamic memory
bandwidth regulation in multi-core real-time systems, in: 2018 IEEE Real-Time
Systems Symposium, RTSS, 2018, pp. 230–241, http://dx.doi.org/10.1109/RTSS.
2018.00040.

[45] A. Stevanato, M. Zini, A. Biondi, B. Morelli, A. Biasci, Learning memory-
contention timing models with automated platform profiling, IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst. 43 (11) (2024) 3816–3827, http://dx.
doi.org/10.1109/TCAD.2024.3449237.

Lorenzo Carletti is a Ph.D. student at the University of
Modena and Reggio Emilia. His research interest is mainly
focused on the analysis and software-based mitigation of
memory interference effects in multicores systems, with
special emphasis on FPGA-based heterogeneous systems.

Andrea Serafini is an industrial Ph.D. student at the
University of Modena and Reggio Emilia and Evidence
SRL (Pisa, Italy). He previously graduated in Computer
Science at the Physics, Informatics, and Mathematics De-
partment at the University of Modena and Reggio Emilia.
His research interest is mainly focused on the analysis and
mitigation of memory interference effects in multicores and
heterogeneous systems.

Gianluca Brilli is a postdoctoral researcher in computer
engineering at the University of Modena and Reggio
Emilia, within the High-Performance Real-Time Laboratory
(HiPeRT-Lab) located in Modena, Italy. His expertise lies in
the field of software and hardware acceleration using re-
configurable embedded systems. His main research interests
are main memory QoS regulation and memory interference
mitigation on FPGA-based heterogeneous systems.

http://dx.doi.org/10.1109/TC.2016.2640961
http://dx.doi.org/10.1109/TC.2016.2640961
http://dx.doi.org/10.1109/TC.2016.2640961
http://dx.doi.org/10.1145/3357526.3357574
http://refhub.elsevier.com/S1383-7621(25)00159-6/sb18
http://refhub.elsevier.com/S1383-7621(25)00159-6/sb18
http://refhub.elsevier.com/S1383-7621(25)00159-6/sb18
http://refhub.elsevier.com/S1383-7621(25)00159-6/sb18
http://refhub.elsevier.com/S1383-7621(25)00159-6/sb18
http://dx.doi.org/10.1145/3548773
http://dx.doi.org/10.1007/978-3-030-63171-0_5
http://dx.doi.org/10.1007/978-3-030-63171-0_5
http://dx.doi.org/10.1007/978-3-030-63171-0_5
http://dx.doi.org/10.1109/RTCSA50079.2020.9203722
http://dx.doi.org/10.1109/RTCSA50079.2020.9203722
http://dx.doi.org/10.1109/RTCSA50079.2020.9203722
http://dx.doi.org/10.1109/InPar.2012.6339595
https://developer.arm.com/documentation/ddi0500/j/ch06s02s05
https://www.nvidia.com/content/dam/en-zz/Solutions/gtcf21/jetson-orin/nvidia-jetson-agx-orin-technical-brief.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/gtcf21/jetson-orin/nvidia-jetson-agx-orin-technical-brief.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/gtcf21/jetson-orin/nvidia-jetson-agx-orin-technical-brief.pdf
http://refhub.elsevier.com/S1383-7621(25)00159-6/sb25
http://refhub.elsevier.com/S1383-7621(25)00159-6/sb25
http://refhub.elsevier.com/S1383-7621(25)00159-6/sb25
http://refhub.elsevier.com/S1383-7621(25)00159-6/sb25
http://refhub.elsevier.com/S1383-7621(25)00159-6/sb25
http://refhub.elsevier.com/S1383-7621(25)00159-6/sb25
http://refhub.elsevier.com/S1383-7621(25)00159-6/sb25
https://github.com/LorenzoCarletti/SynthMemBench
https://github.com/LorenzoCarletti/SynthMemBench
https://github.com/LorenzoCarletti/SynthMemBench
http://dx.doi.org/10.1109/CSE.2013.106
http://dx.doi.org/10.1145/1519065.1519076
http://dx.doi.org/10.1145/3341105.3373955
https://docs.amd.com/v/u/en-US/ug1085-zynq-ultrascale-trm
https://docs.amd.com/v/u/en-US/ug1085-zynq-ultrascale-trm
https://docs.amd.com/v/u/en-US/ug1085-zynq-ultrascale-trm
http://dx.doi.org/10.1109/RTAS.2019.00037
http://dx.doi.org/10.1109/RTAS.2019.00037
http://dx.doi.org/10.1109/RTAS.2019.00037
http://dx.doi.org/10.1109/ICFPT47387.2019.00029
http://dx.doi.org/10.1109/ICFPT47387.2019.00029
http://dx.doi.org/10.1109/ICFPT47387.2019.00029
http://dx.doi.org/10.1145/3465370
http://dx.doi.org/10.1145/3465370
http://dx.doi.org/10.1145/3465370
http://dx.doi.org/10.1145/3274281
http://dx.doi.org/10.1016/j.sysarc.2021.102223
http://dx.doi.org/10.1145/3358196
http://dx.doi.org/10.1109/TC.2020.3037747
http://dx.doi.org/10.1109/RTAS.2017.13
http://dx.doi.org/10.1109/RTAS.2017.13
http://dx.doi.org/10.1109/RTAS.2017.13
http://dx.doi.org/10.1109/PACT.2004.1342546
http://dx.doi.org/10.1109/PACT.2004.1342546
http://dx.doi.org/10.1109/PACT.2004.1342546
https://www.cs.virginia.edu/~mccalpin/papers/bandwidth/node2.html#SECTION00020000000000000000
https://www.cs.virginia.edu/~mccalpin/papers/bandwidth/node2.html#SECTION00020000000000000000
https://www.cs.virginia.edu/~mccalpin/papers/bandwidth/node2.html#SECTION00020000000000000000
http://dx.doi.org/10.1109/RTAS58335.2023.00026
http://dx.doi.org/10.1109/RTSS49844.2020.00039
http://dx.doi.org/10.1109/RTSS49844.2020.00039
http://dx.doi.org/10.1109/RTSS49844.2020.00039
http://dx.doi.org/10.1145/3203407
http://dx.doi.org/10.1109/RTSS.2018.00040
http://dx.doi.org/10.1109/RTSS.2018.00040
http://dx.doi.org/10.1109/RTSS.2018.00040
http://dx.doi.org/10.1109/TCAD.2024.3449237
http://dx.doi.org/10.1109/TCAD.2024.3449237
http://dx.doi.org/10.1109/TCAD.2024.3449237

L. Carletti et al. Journal of Systems Architecture 167 (2025) 103487
Alessandro Capotondi (Member, IEEE) is Assistant Profes-
sor at the University of Modena and Reggio Emilia. He
received a Ph.D. in Electronics, Telecommunications and
Information Technology at the University of Bologna. He
has been a research assistant and postdoctoral researcher
at the University of Bologna and the University of Modena
and Reggio Emilia. His research interests focus on embedded
systems, heterogeneous computing devices, architectures for
programmable, reconfigurable logic (FPGA), and HW-SW
co-design of embedded systems. In these areas, he has pub-
lished more than 30 papers in international peer-reviewed
conferences and journals, with more than 1000 citations and
an h-index of 15.

Alessandro Biasci is a team leader at Evidence SRL. He
previously graduated in Computer Engineering at the Uni-
versity of Pisa. His research interest is mainly on the design
of resource-scheduling techniques for embedded and real-
time systems, with specific focus on memory subsystem. He
was involved in national and european research projects.
13
Paolo Valente is an assistant professor at the Department of
Computer Science of the University of Modena and Reggio
Emilia, Italy. His research activity focuses mainly on design-
ing and analyzing resource-scheduling algorithms. Several
of his algorithms have in been included in mainstream
operating systems (Linux, FreeBSD, OS X). He was and is
involved in national and european research projects.

Andrea Marongiu received the Ph.D. degree in Com-
puter and Electronic Engineering from the University of
Bologna, Italy, in 2010. He has been a postdoctoral research
fellow at ETH Zurich, Switzerland. He currently is an
associate professor at the University of Modena and Reggio
Emilia. His research interests focus on programming models
and architectures in the domain of heterogeneous multi-
and many-core systems-onchip. In this field, he has pub-
lished more than 120 papers in international peer-reviewed
conferences and journals.

	Taking a closer look at memory interference effects in commercial-off-the-shelf multicore SoCs
	Introduction
	Background
	Workloads
	Synthetic Benchmarking
	The Polybench-ACC benchmark suite

	Interference Analysis
	Analysis Summary

	Last Level Cache thrashing
	READ_MISS interfered by READ_MISS
	READ_MISS interfered by WRITE_MISS
	READ_MISS interfered by MEMSET
	Analysis Summary

	Related Work
	Discussion and Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	References

