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 A B S T R A C T

Commercial-off-the-shelf (COTS) multicore systems on chip (SoC) represent a cheap and convenient solution 
for deploying sophisticated workloads in various application domains. The combination of several CPU cores 
and dedicated acceleration units tightly sharing memory and interconnect systems can provide tremendous 
peak performance, but also threatens timing predictability due to memory interference. Even when focusing 
on main CPU cores only, it has been reported that task slowdown due to memory interference can surpass 
10×. Such poorly predictable timing behaviors bar greater adoption of COTS multicore SoCs in the domain 
of timing-critical applications, and motivate the wide activity of the research community to study solutions 
aimed at mitigating the problem. Understanding worst-case interference patterns on such hardware platforms 
is fundamental for building any effective memory interference control mechanism. A common assumption in 
the literature is that worst-case interference is generated by (and therefore assessed through) read-intensive 
synthetic workloads with 100% cache miss rate. Yet certain real-life workloads exhibit worse slowdown than 
what is generated under said assumed worst-case, so we study the interference effects of both synthetic and 
real-life benchmarks on different multicore SoCs. Our experiments indicate that cache thrashing causes the 
worst interference experienced by real-life benchmarks – due to their different usage of caches – and that 
there is no universal worst-case workload for every platform.
1. Introduction

Most modern commercial-off-the-shelf (COTS) multicore systems on 
chip (SoCs) rely on high parallelism as a fundamental design paradigm, 
enabling high performance while maintaining contained power con-
sumption. These systems typically rely on shared main memory (DRAM) 
and cache hierarchy, and as the number of the on-chip compute 
units grows contention for these resources intensifies. Under heavy 
contention scenarios, this causes the tasks executing on the various 
cores to experience decreased bandwidth and – ultimately – increased 
execution time (slowdown) [1–3].

The problem has been extensively studied before [4–10], and many 
techniques have been proposed to mitigate its effects and to improve 
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timing predictability [3,11–16]. For any timing analysis or interference 
mitigation solution to be effective it is important to build on top of 
models derived from an in-depth understanding of the timing effects 
that memory interference produces on a given hardware platform. 
Thus, a detailed characterization of the hardware is the very first 
step that must be taken when devising solutions to improve its timing 
predictability.

Synthetic benchmarking methodologies are widely and effectively 
adopted to this aim [17,18], implementing ad-hoc memory access 
patterns that stress specific levels of the memory hierarchy. When 
using synthetic benchmarking, it is often assumed that the worst-
case slowdowns are those experienced by read-only or write-only, 
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memory-intensive workloads that completely bypass the cache hierar-
chy (i.e., that generate 100% miss rate). The intuition is that when 
using this type of workload for both the core under test (i.e. the 
core executing the workload that is subject to the slowdown being 
measured) and the cores that are generating interference the system is 
subject to maximum contention (worst-case scenario) [5,6,10,19–21]. 
However, the massive degree of parallelism and architectural optimiza-
tions present in modern multicore CPUs may jeopardize this simplistic 
assumption, leading to inaccurate timing analysis and, in turn, incorrect 
memory interference mitigation techniques. This motivated a more in-
depth study of the memory interference effects that parallel tasks are 
subject to when running simultaneously on the CPU cores of modern 
multicore SoCs.

In this work, we provide a detailed characterization of the memory 
interference effects generated at various levels of the shared mem-
ory hierarchy by different synthetic and real-world workloads [22] 
co-scheduled on CPU cores. The evaluation, performed on two repre-
sentative hardware platforms: Nvidia TX2 and Xilinx ZU9EG, indicates 
that there is no universal worst-case memory access pattern, as the ef-
fects induced and suffered slowdowns strongly vary with the hardware. 
Moreover, the evaluation shows that memory interference happens 
differently at each level of the shared memory hierarchy, including 
DRAM-interference effects, cache trashing, and all the way down to 
micro-architectural phenomena.

The rest of the paper is organized as follows:  Section 2 introduces 
the background knowledge underlying the problem of memory inter-
ference, the state-of-the-art techniques used for its characterization and 
the reference hardware platforms used in the experiments.  Section 3 
extends the characterization to real benchmarks, showing that the read-
only synthetic benchmark – typically considered as the worst-case in 
terms of sensitivity to memory interference – is not the workload that 
experiences the worst slowdown. Here we also provide examples of how 
using the wrong synthetic benchmark for interference generation may 
lead to a wrong characterization of the worst-case scenario. Section 4 
explains with additional experiments how cache effects can cause 
certain less memory intensive tasks to be more subject to interference 
than others. Section 5 describes related work to ours, positioning our 
contribution with respect to the vast existing literature.  Section 6 
provides a discussion on the obtained results and concluding remarks. 

2. Background

Fig.  1 shows a generic block diagram of a modern commercial off-
the-shelf  (COTS) multicore SoC (MSoC), highlighting its three main 
architectural blocks: CPU complex, Accelerator complex, and Main Mem-
ory.

The CPU complex is typically composed of multiple cores organized 
in homogeneous clusters, internally sharing part of the memory hierar-
chy and other interconnect resources. Most modern MSoC also include 
one or more heavily data-parallel accelerators (GPU, FPGA, DSP) which 
typically also share main memory with the CPU complex. The main 
memory is usually implemented as Dynamic Random Access Memory
(DRAM), and is accessed via a scalable main system interconnect (e.g., a 
crossbar, or a network-on-chip). As the DRAM access latency spans 
hundreds of CPU cycles, the CPU complex of a modern MSoC relies on 
multi-level cache hierarchies to lower the average duration of load/-
store operations. Each CPU core has private L1 data and instruction 
caches; all the cores in a cluster share a unified L2 cache; multiple 
clusters share unified L3 cache. The depth and complexity of the cache 
hierarchy varies with the number of cores and their clustering. SoCs 
with a single cluster typically do not require L3 cache, whereas multi-
cluster SoCs might feature a fourth level in the cache hierarchy. The 
cache block at the deepest level is indicated as the Last Level Cache 
(LLC). Load/store operations that miss in the LLC are routed to the main 
memory. An analogous organization of the internal memory hierarchy 
is typically found also inside the Accelerator complex.
2 
Fig. 1. Shared memory SoC template.

The main interconnect and main memory controller are designed 
in such a way that in the common case there is sufficient avail-
able bandwidth (BW = bytes/second) to satisfy the read/write requests 
coming from the various actors (CPU cores, accelerator cores, DMAs, 
etc.). When several actors (or, in the worst case, all of them) access 
the DRAM simultaneously the requested bandwidth might surpass the
available bandwidth. In such a case, the DRAM is unable to serve the 
requests coming from all the actors at the speed they are issued. This 
phenomenon is commonly referred to as DRAM bandwidth saturation. 
This is an important concept for our work: when a task encounters load-
/store operations that miss in the LLC while the DRAM bandwidth is 
saturated, such operations are delayed. The task perceives this effect as 
a reduced experienced bandwidth (a given amount of data is transferred 
between the hosting CPU and the DRAM in a longer-than-usual amount 
of time), which ultimately manifests as a slowdown in execution time. 

It must be noted that memory interference does not only manifest 
at the DRAM level. Private L1 caches are immune to interference, as 
they are not shared among cores. L2 or lower-level caches shared by 
more than one core (from one or multiple clusters) may be subject 
to interference. Tasks can experience slowdown because of cache in-
terference for different reasons. Loads/stores from different cores and 
targeting different addresses can be mapped on the same shared cache 
line. This causes the latest request to evict the previous content of the 
line. Consecutive accesses to the evicted lines will result in a cache miss, 
hence the slowdown. More specifically, in case of a load operation the 
miss implies a lookup and a refill for the target address in lower (and 
slower) levels of the cache hierarchy. In case of a store operation the 
miss still implies the lookup, but the slowdown experienced by the task 
varies based on the write miss policy. If writethrough is adopted the task 
experiencing the miss is stalled until the store is completed. If writeback
is adopted the store to the DRAM is delayed until the next eviction. The 
slowdown for the writeback is thus experienced by the task that causes 
this next eviction. 

Most modern COTS MSoC adhere to the described architectural tem-
plate, featuring both FPGA-based and GPU-based accelerators. Repre-
sentative examples of such MSOCs are Xilinx Zynq Ultrascale+ (ZU9EG)
and Versal ACAP, as well as Nvidia Tegra SoCs like Jetson TX2 and Xavier 
AGX. 

Table  1 reports the number and the size of the clusters featured 
by each of these MSoCs, along with the size of their LLC and their 
write-miss caching policy (writeback for all of them). We conducted a 
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Table 1
Relevant hardware information for our reference platforms.
 Xilinx ZU9EG Versal ACAP VCK190 Nvidia TX2 Xavier AGX 
 CPU cores per cluster 4 2 4 2  
 Number of clusters 1 1 1 4  
 Last Level Cache size 1 MB 1 MB 2 MB 4 MB  
 Cache write-miss policy writeback writeback writeback writeback  
Fig. 2. DRAM bandwidth reached by the three traffic types on our reference SoCs.
preliminary experiment with each of these platforms, aimed at studying 
DRAM bandwidth saturation under three different types of traffic (for 
more details on these workload we refer the reader to the next section):

• READ_MISS: traffic composed of only load operations that miss in 
LLC, that trigger only cache refills.

• WRITE_MISS, traffic composed of only store operations that miss 
in LLC. Consecutive stores target non-contiguous addresses which 
are (a multiple of) the cache line size far apart. This traffic triggers 
both cache refills (because the store only writes part of the cache 
line, the rest needs to be read from memory) and writebacks 
(upon cache line eviction).

• MEMSET : traffic composed of only store operations that miss in 
LLC. Consecutive stores target contiguous addresses, thus entire 
cache lines are written consecutively. This not only avoids the 
cache refills from WRITE_MISS traffic, but bypasses the cache 
altogether, enabling the read-allocate mode [23]. When this mode 
is activated, the full set of stores is posted into a store buffer, that 
is asynchronously copied to DRAM, and the contents of the LLC 
remain unchanged. For the rest of the paper, we refer to this type 
of traffic as write-no-allocate traffic (a name which better reflects 
the type of memory accesses generated).

Fig.  2 shows the results of the experiment. The X axis shows the 
number of cores involved and the Y axis the cumulative bandwidth 
requested (average of 20 executions), for each of the three traffic types. 
For the Nvidia TX2 and Xilinx ZU9EG platforms it is possible to observe 
bandwidth saturation effects in the plots, as the requested bandwidth 
3 
reaches a plateau for a number of active cores smaller than the total. 
Depending on the hardware, different traffic types can either reach 
saturation with different configurations (e.g., MEMSET  in Xilinx ZU9EG
reaches saturation with one single core, whereas the other two traffic 
types saturate as more cores are involved), or exhibit distinct saturation 
bandwidths for different traffic types (e.g., MEMSET  in Nvidia TX2 has 
a much higher maximum bandwidth than the other traffic types). It 
also appears clear that the workload which generates the highest 
bandwidth is different for the various platforms. 

On the other hand, the Versal ACAP VCK190 and the Xavier AGX
platforms do not exhibit the same clear saturation effects, nor they 
highlight other interesting phenomenon. The reason for this is that the 
overall bandwidth is overdimensioned for the total number of cores and 
number of cores per cluster. We believe however that Nvidia TX2 and
Xilinx ZU9EG clustering are more representative of what future SoCs 
will implement when scaling to larger core counts. This intuition is 
confirmed by looking at how NVIDIA organized the architecture of Orin 
AGX [24], the successor of Xavier AGX . Here both the 12-core and 8-
core variants of the SoC organize their cores in 3 and 2 clusters that 
closely resemble the ones found in Nvidia TX2 and Xilinx ZU9EG. 

For this reason in the remainder of the paper we just report our find-
ing on this two platforms, omitting what we observed on Versal ACAP 
VCK190 and the Xavier AGX , that does not add to the conclusion. Also, 
in the remainder of the paper we focus on interference effects generated 
when the CPU complex alone is active. The study of CPU/accelerator 
interference falls beyond the scope of this paper, and is left as future 
work. 
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2.1. Workloads

In this subsection, the workloads used in all the experiments in this 
paper are described.

2.1.1. Synthetic benchmarking
Synthetic memory-access generators are commonly used to produce 

controlled interference and measure resulting slowdowns [5,6,10,19–
21]. They allow a wide spectrum of access patterns to be easily gen-
erated. In general, a synthetic benchmark [17,18] typically has the 
following parameters (which can be configurable or preset depending 
on how the benchmark is designed):

1. Type of memory operation (𝑡), including read (i.e., loads),
write (i.e., stores), r/w (both loads and stores). In particular, we 
differentiate between full cache line stores (𝑤, used by workloads 
of the MEMSET  type, where stores at contiguous addresses are 
issued in a loop which fills the cache line) and non-full cache 
line stores (𝑤𝑠, used by workloads of the WRITE_MISS type, 
represented by a single store) due to the significantly different 
behavior they present;

2. Number of memory and CPU operations (𝑚𝑜𝑝𝑠, 𝑐𝑜𝑝𝑠). The 
synthetic benchmark issues mops memory operations of the spec-
ified type t in a loop. Between one memory operation and the 
next, cops compute operations (or simple no-ops) are executed. 
This allows to control memory-to-compute ratio and, in turn, 
to generate more or less interfering (or sensitive-to-interference) 
workloads.

3. Address stride (𝑠𝑡). The distance between two consecutive mem-
ory accesses (i.e., the stride). It heavily influences the cache 
miss rate (i.e., the sensitivity to interference), as certain specific
stride configurations may be chosen to avoid the effects of line 
prefetching, depending on what the benchmark wants to assess;

4. Access pattern (𝑝). Most real-life workloads tend to generate
sequential access patterns — which consist of constant, small
strides [19,25], which the DRAM controller is optimized to han-
dle faster. In contrast, a random access pattern is one where 
the stride is updated randomly for any two consecutive accesses, 
which the DRAM controller takes longer to handle. Note that 
very long constant strides behave as random patterns [19,25];

5. Memory footprint (𝑓𝑝), the footprint of the data structure ac-
cessed by the benchmark heavily influences cache behavior, as 
data that fits entirely in cache is bound to generate a high 
number of hits, as opposed to data that exceeds the size of the 
cache.

 Algorithm 1 describes the synthetic benchmark we designed for this 
paper [26]. The algorithm takes as inputs: (i) the base address addr of 
the data structure on which the memory operations are performed; (ii) 
the type 𝑡 and number 𝑚𝑜𝑝𝑠 of memory operations to be performed 
on the data structure; (iii) the number 𝑐𝑜𝑝𝑠 of compute operations to 
be done after every memory operation; (iv) the stride 𝑠𝑡 between the 
addresses of any two consecutive memory operations; (v) the global 
footprint 𝑓𝑝 of the data structure. The main procedure consists of a loop 
that iterates 𝑚𝑜𝑝𝑠 times. At each iteration it first executes the designated 
memory operation (specified by the type parameter 𝑡) at target address 
𝑎𝑑𝑑𝑟+𝑜𝑓𝑓𝑠𝑒𝑡. After that, the 𝑜𝑓𝑓𝑠𝑒𝑡 is incremented according to the stride 
parameter 𝑠𝑡. Finally, a loop that executes 𝑐𝑜𝑝𝑠 compute operations is 
executed.

Algorithm 2 describes the actual synthetic benchmarks READ_MISS,
WRITE_MISS and MEMSET . The three synthetic benchmarks call 𝑟𝑒𝑝𝑠
times inside of a loop SYNTH_BENCH, with preset parameters. These 
are the same for all the benchmarks, aside from the type parameter 𝑡, 
which is different between the three (READ_MISS has 𝑡 = 𝑟, WRITE_MISS
has 𝑡 = 𝑤𝑠, and MEMSET  has 𝑡 = 𝑤). 
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Algorithm 1: Synthetic Benchmark. LINE_SIZE is a const repre-
senting the LLC line size on the target.
1 Function SYNTH_BENCH(addr,t,mops,cops,st,𝑓𝑝)

Input: 𝑎𝑑𝑑𝑟: read or write base address, 𝑡: access type 
(r/w/rw), 𝑚𝑜𝑝𝑠: number of memory operations, 𝑐𝑜𝑝𝑠: 
number of cpu operations, 𝑠𝑡: access stride, 𝑓𝑝: 
memory footprint

2 𝑖 ← 0;
3 𝑜𝑓𝑓𝑠𝑒𝑡 ← 0;
4 while 𝑖 < 𝑚𝑜𝑝𝑠 do
5 if 𝑡 = 𝑟 then
6 load(𝑎𝑑𝑑𝑟 + 𝑜𝑓𝑓𝑠𝑒𝑡)
7 end 
8 if 𝑡 = 𝑤 then
9 for 𝑖 ← 0 to 𝐿𝐼𝑁𝐸_𝑆𝐼𝑍𝐸 by 4 do
10 store(𝑎𝑑𝑑𝑟 + 𝑜𝑓𝑓𝑠𝑒𝑡 + 𝑖)
11 end 
12 end 
13 if 𝑡 = 𝑤𝑠 then
14 store(𝑎𝑑𝑑𝑟 + 𝑜𝑓𝑓𝑠𝑒𝑡)
15 end 
16 𝑜𝑓𝑓𝑠𝑒𝑡 ← (𝑜𝑓𝑓𝑠𝑒𝑡 + 𝑠𝑡) mod 𝑓𝑝;
17 𝑖 ← 𝑖 + 1;
18 𝑗 ← 0; while 𝑗 < 𝑐𝑜𝑝𝑠 do
19 𝑗 ← 𝑗 + 1;
20 end 
1 end 

Algorithm 2: Different synthetic benchmarks configurations 
used for the evaluation.
1 Function READ_MISS(𝑠𝑟𝑐, 𝑟𝑒𝑝𝑠)

Input: 𝑠𝑟𝑐: read base address
2 for 𝑖 ← 𝑟𝑒𝑝𝑠 do
3 SYNTH_BENCH(𝑠𝑟𝑐, 𝑟, 𝑚𝑜𝑝𝑠, 𝑐𝑜𝑝𝑠, 𝑠𝑡, 𝑓𝑝)
4 end 
5 Function WRITE_MISS(𝑑𝑠𝑡, 𝑟𝑒𝑝𝑠)

Input: 𝑑𝑠𝑡: write base address
6 for 𝑖 ← 𝑟𝑒𝑝𝑠 do
7 SYNTH_BENCH(𝑑𝑠𝑡, 𝑤𝑠, 𝑚𝑜𝑝𝑠, 𝑐𝑜𝑝𝑠, 𝑠𝑡, 𝑓𝑝)
8 end 
9 Function MEMSET(𝑑𝑠𝑡, 𝑟𝑒𝑝𝑠)

Input: 𝑑𝑠𝑡: write base address
0 for 𝑖 ← 𝑟𝑒𝑝𝑠 do
11 SYNTH_BENCH(𝑑𝑠𝑡, 𝑤,𝑚𝑜𝑝𝑠, 𝑐𝑜𝑝𝑠, 𝑠𝑡, 𝑓𝑝)
2 end 

Many works in the state of the art [5,6,10,19–21] have operated 
under the assumption that the worst-case access can be modeled by: (i) 
choosing 𝑡 = 𝑟 or 𝑡 = 𝑤𝑠 (i.e., instantiating READ_MISS or WRITE_MISS
traffic types); (ii) making the stride an integer multiple of the LLC line 
size with a sequential access pattern; (iii) choosing a footprint bigger than 
the full LLC size, as it removes the possibility of one of the cache levels 
intercepting the memory accesses with cache hits when the algorithm 
executes in a loop, thus causing a 100% miss rate (meaning DRAM 
operations). In this paper we further study the problem of worst-case 
interference characterization, and we show that there are a number of 
effects which are not correctly captured by the synthetic benchmark 
generated using what was previously thought as the worst-case access 
model. This is important, as it means that the real worst-case interfer-
ence can have a much higher impact on timing than previous work was 
based on.
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Fig. 3. Example of how the slowdown of multiple Polybench benchmarks combines to 
create the area of one category in Fig.  4.

2.1.2. The Polybench-ACC benchmark suite
Synthetic benchmarks enable precise control of the generated mem-

ory traffic and, presumably, interference. However, the memory access 
patterns generated by synthetic benchmarks are limited to a subset 
of the ones generated by real-world workloads, and specific memory 
interference effects may not be triggered by them. For this reason, 
we also use real-life benchmarks in this paper, the Polybench-ACC 
benchmark suite [22]. The suite is a collection of compute kernels 
that are commonly found inside larger programs belonging to different 
categories: data mining, stencils, medley and linear-algebra kernels and 
solvers. In our experimental setup we compile the suite for single-
core execution with the default dataset size. For most benchmarks that 
corresponds to the STANDARD_DATASET size. For benchmark cor-
relation the default setting corresponds to EXTRALARGE_DATASET. 
For convolution-3d and convolution-2d to LARGE_DATASET. 

3. Interference analysis

In the interference analysis, we measure the execution time of a
task under test running on one of the cores, with the interfering tasks
executing on the remaining cores. The task under test is either one 
of our synthetic benchmarks or one of the Polybench benchmarks 
(see Section 2), while the interfering tasks are one of our synthetic 
benchmarks. We chose to include the Polybench as task under test in our 
interference analysis to better represent how real-life workloads may be 
subject to interference on our target platforms (Xilinx ZU9EG and Nvidia
TX2). Interfering tasks access memory at a controllable intensity by 
changing the ratio between 𝑀𝑜𝑝𝑠 and 𝐶𝑜𝑝𝑠 (see Section 2). By tuning 
this ratio, we regulate the percentage of total memory bandwidth that
interfering tasks are allowed to consume. We report this percentage in 
the plot on the X axis as throttling parameter THR%.

Figs.  4(a), 4(b), 4(c) and 4(d), 4(e), 4(f) present the interference 
analysis results obtained using the Nvidia TX2 and the Xilinx ZU9EG, 
respectively. There is one subplot for each interference traffic type 
(READ_MISS, WRITE_MISS, MEMSET ). The experiments were run 10 
times for each benchmark due to the high amount of time some of the 
Polybench require to run, especially when subject to interference. The 
results we obtained had really low standard deviation when compared 
to the mean (since all the results were within 5% of the average), as 
such, the average of the measured slowdown was plotted for all the 
experiments in Fig.  4. The slowdown curve of the synthetic benchmarks 
running as task under test are shown as black curves, whereas the 
slowdown curve of the 30 Polybench benchmarks are presented in 
the form of areas (i.e., grouped), with a label indicating how many 
Polybench benchmarks fall in one specific category. The perimeter of 
the areas is obtained by merging the highest and lowest values of 
all the slowdown curves of the Polybench which are part a specific 
category as the THR% changes (with the special case of the area 
5 
becoming a line when only one benchmark fits in a category). This 
process is shown with an example in Fig.  3. The categories in Fig.  4 are: 
(i) ABOVE: those benchmarks that suffer more interference than the
READ_MISS synthetic benchmark throughout the entire THR% range; 
(ii) CROSSING: those benchmarks that suffer more interference than 
the READ_MISS synthetic benchmark only for some THR% configura-
tions; (iii) BELOW: those benchmarks that suffer less interference than 
the READ_MISS synthetic benchmark. READ_MISS (black curve with 
blue circular points) was used as the divider between categories as it 
was assumed by previous works [5,19–21] to be the task under test
most sensitive to memory interference. If that assumption were true, 
no benchmarks should fall into the ABOVE or CROSSING categories in 
any part of Fig.  4. However, one can quickly notice that is not the case. 
In general, it can be observed that the READ_MISS synthetic benchmark 
is not the task most subject to interference in any of the subplots. Not 
only that, but in all subplots some of the Polybench are more subject 
to interference than any of the synthetic benchmarks.

As an example, subplots 4(a) and 4(d) present the slowdown per-
ceived by real and synthetic benchmarks when running in the presence 
of READ_MISS interfering tasks, an interference configuration which 
some literature [5,20,21] considered to be the worst-case one. Subplot 
4(a) shows that, for the Nvidia TX2 platform, two Polybench fall into 
the ABOVE category, while twelve belong to the CROSSING category. 
On the other hand, subplot 4(d) shows that, for the Xilinx ZU9EG
platform, four Polybench fall within the ABOVE category, and two 
belong to the CROSSING one. Note that these results are not captured 
by the assumption made in the previously cited works.

Subplots 4(b) and 4(c) show that the worst-case interference on
Nvidia TX2 is generated by WRITE_MISS (Subplot 4(b)), which causes 
R/W traffic due to the cache-line update operation. This result is in 
line with how other literature [6,10,19] conducts interference analysis. 
However, subplots 4(e) and 4(f) show that on the Xilinx ZU9EG hard-
ware the worst-case interference traffic type is MEMSET  (Subplot 4(f)), 
which causes slowdowns of up to ≈12×. This is a type of interference 
which is not often investigated, even among literature which is more 
thorough and checks for WRITE_MISS traffic. 

3.1. Analysis summary

The results presented in this Section demonstrate that on the Xilinx
ZU9EG and the Nvidia TX2, READ_MISS is neither the workload causing 
the highest amount of interference (highlighted by subplots 4(b) and
4(f)) nor the one most sensitive to memory interference (as seen in all 
subplots of Fig.  4). In fact, the results are highly platform-dependent, 
with the two analyzed MSoCs having different worst-case interfering 
tasks (WRITE_MISS on the Nvidia TX2 and MEMSET  on the Xilinx
ZU9EG). Fig.  4, in general, highlights the need to do proper memory 
interference characterization, to determine the actual worst-case: it is 
not possible to make generalizations. Finally, the results also show 
that some Polybench are more subject to interference than any of 
the synthetic benchmarks. As the synthetic benchmarks are also the
interfering tasks, and they interact with the DRAM due to the way they 
were constructed, this may seem counterintuitive.

In the next section, we explore why specific real-world benchmarks 
are more sensitive to memory interference than synthetic ones. 

4. Last level cache thrashing

Further investigation is required to understand why some real-world 
workloads suffer from more interference than synthetic ones — which 
are modeled to capture the worst-case behaviors. When conducting in-
terference analysis, it can be misleading to exclusively focus on DRAM 
interference. Cache events can also play a pivotal role in execution 
time increase. In this section, we thoroughly analyze and quantify the 
effects of cache interference, providing a correlation between the traffic 
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Fig. 4. Nvidia TX2 (a,b,c), Xilinx ZU9EG (d,e,f). Time increase for Synthetic and Polybench benchmarks. Note: each plot has a different maximum y axis value.
generated by the interfering tasks, and their effect on the memory perfor-
mance of our evaluation setup. Cache interference has been addressed 
in the literature using techniques like shared cache partitioning [27,28]. 
In this section, we also expose a micro-architectural cache interference 
effect reported on the Xilinx ZU9EG that may not be solved through the 
previously mentioned techniques.

For this evaluation, we profile the execution of the READ_MISS syn-
thetic benchmark acting as a task under test , under different interference 
configurations. We focus on this benchmark because it is the only one 
that generates regular cache memory traffic. Therefore, it can be easily 
tracked and analyzed. The other benchmarks (i.e., WRITE_MISS and
MEMSET ), generate a memory traffic that either pollutes the cache 
(i.e., WRITE_MISS), making it difficult to analyze the cache effects, or 
does not access the cache memory at all (i.e., MEMSET , see Section 2). 
During each test run, we keep track of the LLC refills using Performance 
Monitoring Units (PMUs) [29]. Since the two hardware platforms that 
we use have different memory configurations (i.e., 1 MB and 2 MB 
LLC cache size for the Xilinx ZU9EG and the Nvidia TX2, respectively), 
we use two different sets of memory footprint (i.e., 𝑓𝑝) for the task 
under test in the two setups. For the Xilinx ZU9EG, we use buffer sizes 
of 512 KB, 768 KB, 2048 KB, and 16384 KB. For the Nvidia TX2, 
we use 1024 KB, 1536 KB, 4096 KB, and 32768 KB buffers. Overall, 
the idea is to use memory footprints that are respectively smaller and 
larger than the LLC size in both setups, to emphasize the effects of the 
LLC cache behavior in the results. The interference is generated using 
our synthetic benchmarks – one for each remaining core – configured 
with a fixed 𝑓𝑝 of 16 MB, which is way larger than the LLC size of 
both platforms. This ensures that the interfering tasks cause interference 
at each level of the memory hierarchy. For each type of memory 
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interference, we repeat the execution of the experiment, with varying 
values of the THR% parameter (see Section 3) of the interfering tasks. 
These configurations of the synthetic benchmarks require a really low 
amount of time to run. As such, the results reported in this section are 
the average of the measurements taken by doing 1000 runs for each 
value of THR% (in general, the results were within 5% of the average).

Figs.  5 and 6 present the results of the experiments for the Nvidia
TX2 and the Xilinx ZU9EG, respectively. In particular, Figs.  5(a), 5(b), 
5(c) and 6(a), 6(b), 6(c) present the slowdown of the task under test , 
while 5(d), 5(e), 5(f) and 6(d), 6(e), 6(f) present the LLC refill results. 
In the figures, each subplot presents the results as a function of both the 
type of interference generated by the interfering tasks (i.e., READ_MISS,
WRITE_MISS and MEMSET ) and the THR% parameter configuration. In 
the following sections, we discuss the results for each configuration of 
the interfering tasks.

4.1. READ_MISS interfered by READ_MISS

Subplots 5(a), 5(d), and 6(a), 6(d) show the results obtained by 
using READ_MISS as interfering tasks. As expected, the results heavily 
depend on the 𝑓𝑝 configuration of the task under test . If the 𝑓𝑝 of the
task under test is larger than the LLC size, each load operation performed 
triggers an LLC refill, regardless of the THR% setting used for the
interfering tasks. This is highlighted in Fig.  5(d) for 𝑓𝑝 configurations 
of 4096K and 32768K, and Fig.  6(d) for configurations of 2048K 
and 16384K. As a result, the number of LLC-to-DRAM transactions is 
constant, and the slowdown shown in Figs.  5(a) and 6(a) is entirely 
caused by DRAM interference. We notice that this phenomenon leads 
to a 3× slowdown on the Nvidia TX2 board and to a 1.5× slowdown on 
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Fig. 5. Nvidia TX2. Slowdown and LLC refills triggered by the task under test as a function of the interfering tasks configuration.
the Xilinx ZU9EG. On the other hand, when 𝑓𝑝 is smaller than the LLC 
size and the interfering tasks are muted (i.e., 0% THR%), the memory 
buffer used by the task under test is entirely cached, and the benchmark 
generates a negligible amount of LLC refills. This is reported in Fig. 
5(a) for 𝑓𝑝 configurations of 1024K and 1536K, and in Fig.  6(a) for 
configurations of 512K and 768K. As the THR% grows, we observe 
an increasing number of LLC refills due to the cache space contention 
generated by the interfering tasks. In this case, the slowdown is caused 
by both the DRAM interference and the LLC eviction, and therefore, it 
is much more severe. Ultimately, the results report a slowdown factor 
of 11× on the Nvidia TX2 platform (Fig.  5(a)), and 4.5× on the Xilinx
ZU9EG (Fig.  6(a)).

4.2. READ_MISS interfered by WRITE_MISS

Figs.  5(b), 5(e), 6(b), and 6(e) report the slowdown and LLC refill 
results obtained using WRITE_MISS as interfering tasks. In this con-
figuration, the results reported in Figs.  5(e) and 6(e) show that the 
LLC refills are comparable to the ones registered in the READ_MISS
interfered by READ_MISS configuration (Figs.  5(d) and 6(d)). However, 
the slowdown results (Figs.  5(b), 6(b)) are sensibly higher, especially 
on the Xilinx ZU9EG platform. To explain such a difference we repeat 
the benchmark execution using PMUs to profile the number of LLC 
writebacks performed by the task under test .
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The LLC writeback results are reported in Figs.  7 and 8.  In case 
of READ_MISS interference (Figs.  7(a), 8(a)), the number of LLC write-
backs is less than 103 for each 𝑓𝑝 configuration that is used. In the 
same configuration, the number of LLC refills (see Figs.  5(d), 6(d)) 
reaches 105 − 106. Therefore, the number of LLC writebacks represents 
less than 1% of the total number of LLC-to-DRAM transactions, and can 
be considered as negligible. This is because the traffic generated by the
task under test and the  interfering tasks is read-only, and no cache line is 
written back to DRAM memory.  On the other hand, the number of LLC 
writebacks registered in the READ_MISS interfered by WRITE_MISS con-
figuration (Figs.  7(b), 8(b)) grows accordingly to the THR% parameter 
of the interfering tasks. This happens because both platforms implement 
a writeback caching policy, therefore, dirty cached data is evicted to 
memory only when the CPU cores try to access the corresponding cache 
line, as explained in Section 2. The task under test , generating read-only 
traffic, triggers a number of LLC refills that evict (i.e., write back to 
DRAM) the cache lines dirtied by the interfering tasks. Ultimately, this 
leads to an increase in the number of LLC writebacks transactions over 
the worst-case registered by the READ_MISS interfered by READ_MISS
configuration, and therefore to a higher slowdown in the benchmark 
execution time. This configuration represents the worst-case slowdown 
scenario for the Nvidia TX2 platform, as the reported slowdown reaches 
up to a factor 12.5×. Whereas, on the Xilinx ZU9EG, we register a 10×
increase in execution time.
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Fig. 6. Xilinx ZU9EG. Slowdown and LLC refills triggered by the task under test as a function of the interfering tasks configuration.
4.3. READ_MISS interfered by MEMSET

As explained in Section 2, the traffic generated by MEMSET  in-
terfering tasks is 100% write-no-allocate. This write-only traffic directly 
writes out to DRAM without causing any cache LLC refills/writebacks. 
The results obtained by executing the task under test with this type of
interfering tasks, reported in Figs.  5(c), 5(f), 7(c), and 6(c), 6(f), 8(c) 
demonstrate this aspect. In fact, the impact of the THR% parameter 
on the number of LLC refills/writebacks is almost null or negligible 
if compared to other configurations (see Sections Section 4.1, 4.2). 
Nevertheless, the slowdown results are very different between the two 
setups. On the Nvidia TX2 (Fig.  5(c)), the results register a slowdown 
factor of 2.5× when the 𝑓𝑝 is larger than the LLC size, whereas no 
slowdown can be noticed if the 𝑓𝑝 is smaller than the LLC size. Note 
that this is the expected result since the interfering tasks do not affect 
the behavior of the cache and therefore do not create cache space 
contention. On the Xilinx ZU9EG (Fig.  6(c)), we obtain a 2.5×-3.5×
slowdown when the 𝑓𝑝 is larger than the LLC size, which is comparable 
to the one obtained using WRITE_MISS interference, and an unexpected
42× slowdown when the 𝑓𝑝 is smaller than the LLC size. To understand 
the cause of this slowdown, we better analyze the memory architecture 
of the Xilinx ZU9EG.
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The Xilinx ZU9EG implements a non-blocking cache: a cache mem-
ory that can simultaneously handle CPU requests and linefills/write-
backs [30]. In this cache, a store buffer temporarily holds writeback 
operations that exit the cache memory (evictions). This way, the cache 
can continue serving CPU requests while completing writebacks. On 
the Xilinx ZU9EG, the store buffer is also used to hold and merge write-
no-allocate transactions. By merging multiple transactions into a single 
memory burst, the write-no-allocate traffic suffers less per-transaction 
overhead, enjoying a higher memory bandwidth [30]. However, the 
store buffer has a limit: if it becomes full (e.g., saturated by requests), 
the cache blocks and no longer accepts CPU requests [31]. This causes 
the CPU cores to stall until the entries in the store buffer are freed 
(written back to memory). 

Cache blocking can happen in the READ_MISS interfered by MEM-
SET  scenario: the write-no-allocate traffic generated by the MEMSET
interfering tasks can saturate the store buffer, causing the LLC cache to 
block. This, in turn, can cause the CPU core executing the READ_MISS
task to stall. To demonstrate this phenomenon, we repeated the ex-
ecution of the task under test (𝑓𝑝 = 512 KB) both in isolation and 
co-scheduled with MEMSET  interfering tasks. During the execution, we 
used PMUs to profile the execution of both the task under test and 
the interfering tasks. For the task under test , we configured PMUs to 
track the CPU stalls because of load misses event (PMU event number 
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Fig. 7. Nvidia TX2. LLC writebacks triggered by the task under test as a function of the interfering tasks configuration.

Fig. 8. Xilinx ZU9EG. LLC writebacks triggered by the task under test as a function of the interfering tasks configuration.

Fig. 9. READ_MISS (𝑓𝑝 = 512 KB) interfered by MEMSET . The CPU STALLS because of load miss (Subplot 9(a)) are measured on the task under test . The WRITE OPERATIONS that 
stall the pipeline because the store buffer is full (Subplot 9(b)) are measured on the interfering tasks.
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0xE7). For the interfering tasks, we configured the PMUs to track the
WRITE OPERATIONS that stall the pipeline because the store buffer is 
full event (PMU event number 0xC7). The results are reported in Fig. 
9. In the figure, the subplots present the results as a function of the
THR% parameter of the interfering tasks. As shown in Subplot 9(b), 
when the THR% parameter changes from 90% to 100%, the number 
of WRITE OPERATIONS that stall the pipeline because the store buffer is 
full grows from ≈ 106 to ≈ 109. Accordingly, the number of CPU stalls 
because of load misses (Subplot 9(a)) grows from ≈ 105 to ≈ 107. This 
result indicates that when the THR% parameter reaches 100%, the store 
buffer gets saturated by the memory requests of the MEMSET  interfering 
tasks, causing the CPU core executing the task under test to stall, and 
ultimately, the observed slowdown. 

4.4. Analysis summary

This analysis allows us to draw several results: (i) First, we observe 
that cache-bound benchmarks (i.e., 𝑓𝑝 < LLC size) suffer from greater 
slowdown when compared to the DRAM-bound ones (see Section 4.1). 
This phenomenon demonstrates that, on our platforms, the cache con-
tention problem is more severe than DRAM interference. (ii) Second, 
we observe that the performance of the task under test is not only 
influenced by DRAM interference and cache space contention, but also 
by additional interference from cache maintenance operations (i.e., LLC 
writebacks, see Section 4.2). This has proven to be a major source of 
slowdown on our setup, particularly on Xilinx ZU9EG. (iii) Lastly, we 
note that the combination of different memory access patterns can gen-
erate a slowdown which is not exclusively caused by interference but 
also by architectural phenomena, which act as hardware bottlenecks in 
the memory hierarchy (see Section 4.3).

5. Related work

Many papers address the problem of memory interference in the 
context of multicore SoCs  [1,2,4–8,21,25,32–34]. Typically, they fall 
into one of three main categories: platform-specific memory charac-
terization, DRAM maximum interference estimate and mitigation, and 
cache access predictability.
Platform-specific memory characterization. The problem of identifying 
interference effects in modern MSoCs is very relevant, and many works 
have analyzed the interference characteristics on different types of 
COTS MSoCs (mainly FPGA-based SoC, GP-GPU-based SoC). Bansal 
et al. [25] propose a deep characterization of the memory systems 
present on the ZU9EG, with some focus on the interference which the 
CPU cores can cause to each other. Manev et al. [32] tried to analyze 
the memory performance and requirements of accelerators on ZU9EG 
and ZU3EG. Capodieci et al. [21] highlight how on Nvidia’s platforms, 
instead, DRAM performance has evolved over the years, with the rapid 
increase in GPU performance.

In this paper, we also performed extensive tests on different embed-
ded multicore SoCs from different vendors and with different features 
to characterize various possible interference effects.
DRAM maximum interference estimate and mitigation. Memory interfer-
ence in MSoC has been a significant research focus since these systems 
were introduced. Several studies have concentrated on estimating the 
Worst-Case Execution Time (WCET) using various analytical methods. 
Andreozzi et al. [12] employed mixed integer linear programming 
(MILP) to provide a rigorous estimation. Other works have also utilized 
synthetic loads. Radojkovi et al. [5] focused on singular load types. 
Nowotsch et al. [6] instead combined different types of memory access 
patterns, such as WRITE_MISS and READ_MISS. Hyoseung et al. [11] in-
stead aimed at defining boundaries for memory-based interference from 
CPU cores within MSoC. In addressing the mitigation and management 
of memory access and interference, various research efforts have ex-
plored scheduling mechanisms to reduce conflicts when multiple cores 
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access shared hardware resources such as DRAM [13,14,16,19,35]. 
Together, these approaches represent a range of strategies for reducing 
memory contention and ensuring more predictable performance in 
MSoC.

Cache access predictability. In addition to managing memory access and 
interference, significant research has focused on the control and man-
agement of shared cache interference in MSoC systems. Dugo et al. [36] 
leverage cache locking and partitioning to reduce non-determinism and 
contention in lower-level caches, which improves timing performance. 
Kaushik et al. [37,38] address cache coherence through specialized 
protocols. They propose a predictable modify-share-invalid (MSI) pro-
tocol and a modify-exclusive-share-invalid (MESI) protocol, which use 
specific design invariants to ensure predictability and minimize cache 
interference.

Other researchers focus on analyzing cache usage fairness. Seong-
beom et al. [39] present a scheme which demonstrates that fair cache 
usage directly correlates with improved execution time, providing a 
different perspective on managing cache resources effectively.

Valsan et al. [8] present a different cache mitigation technique, 
tested on COTS multicore systems, which provides better guarantees 
than the classic cache partitioning for their tested workloads.

In summary, while various strategies exist to handle shared cache 
interference, their effectiveness can vary significantly based on the 
architecture and workload. As demonstrated by the characterization 
in this paper, careful attention must be paid to choosing the proper 
techniques to ensure predictable and efficient performance in multicore 
SoC environments.
Proper worst-case interference estimate. There are some examples of 
underestimating the worst-case in the literature which we already cited.

Capodieci et al. [21] measure the effect of memory interference 
on Nvidia’s platforms (including on Nvidia TX2). In their experiments 
they use READ_MISS to measure interference effects as the task under 
test , which was proven as the task not most subject to interference in 
Section 3. This means that the worst-case when it comes to DRAM-
based interference is underestimated.  Cavicchioli et al. [20] present 
the technique of Controlled Memory Request Injection (CMRI) and 
evaluate its effectiveness with synthetic benchmarks run on the Nvidia
TX2. However, they try to model worst-case interference by using
READ_MISS as both the task under test and the interfering tasks, which 
means that the worst-case is underestimated, as the results in Section 3 
highlight. Brilli et al. [19] present a work on modern HeSoC memory 
regulation and control, which expands on the work from Cavicchioli 
et al. [20]. They evaluate CMRI on both the Nvidia TX2 and Xilinx
ZU9EG. The previous analysis is expanded with WRITE_MISS as another 
possible interfering task. However, in their experiments they: (i) do 
not take into consideration MEMSET  as a interfering task (important 
for the Xilinx ZU9EG); (ii) still only consider READ_MISS as the most 
interfered task under test . This means that they also underestimated the 
worst-case interference with which to compare their mitigation tech-
nique. Hyoseung et al. [10] try to bound memory interference delay in 
COTS MSoCs. During the evaluation, they make use of the STREAM
benchmark [40] as the interfering task. The STREAM benchmark at 
its highest level of memory intensity acts like a memcpy, which has 
a memory access pattern very similar to WRITE_MISS. While this is 
fine for the case examined in the paper, on a platform like the Xilinx
ZU9EG using this benchmark would not expose the interference effects 
which happen with MEMSET  as the interfering task. Nowotsch et al. [6] 
in their maximum DRAM interference estimation only investigate the 
interference of WRITE_MISS and READ_MISS traffic, meaning that their 
methodology may not find the actual worst-case on some platforms, 
as we have demonstrated in this paper.  Radojkovi et al. [5] present 
WCET bound estimates which also make use of READ_MISS as both the
task under test and the interfering task, without proper checks for other 
traffic types. This leads to the possibility of a WCET bound estimate 
significantly lower than the real WCET, as we observed for both the
Nvidia TX2 and the Xilinx ZU9EG.
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6. Discussion and conclusion

In this work, we presented a thorough analysis of DRAM and intra-
cluster interference effects on two representative multicore SoCs: the
Nvidia TX2 and the Xilinx ZU9EG. We show that DRAM-bound read-
only and write-only traffics generated by synthetic workloads do not 
represent worst-case in terms of sensitivity to memory interference, that 
different workloads generate different levels of interference and that 
there is no single traffic type which generates the highest amount of 
interference on all platforms. To find the worst-case for the hardware 
under analysis, an in-depth interference characterization is necessary. 
We highlighted that the impact of interference depends on the memory 
hierarchy level where it occurs: we observed up to 3× slowdown due 
to DRAM-interference, up to 13× slowdown due to the combination of 
LLC space contention and DRAM interference, and a 42× slowdown due 
to an architectural bottleneck in the memory hierarchy of the Xilinx
ZU9EG. With these high slowdowns we present, we explain in this 
paper why, counterintuitively, some tasks which do not make particular 
use of the main memory under normal circumstances can be subject 
to more slowdown than synthetic benchmarks when subject to intra-
cluster interference. There are multiple ways in which current and 
future works may be affected by our findings and from the methodology 
we used in this paper.

Memory interference mitigation techniques [14,16,41,42] may be 
able to make use of the characterization and findings introduced in this 
paper to create a more precise interference analysis for their hardware, 
more aware of the limitations of their platforms. This improved analysis 
could then be used to better estimate the interference that a platform 
is subject to at runtime. With a more precise interference estimate, 
these mitigation techniques would then be able to more precisely 
limit the bandwidth of non-critical tasks, instead of taking conserva-
tive approaches which exclusively prioritize the timing guarantees of 
time critical tasks. This would in turn reduce bandwidth regulation 
inefficiency, leading to reduced waste of hardware resources [20].

Similar considerations apply to those approaches that rely on WCET 
estimation to derive formal schedulability analysis [12,43,44]. The 
more thorough interference characterization could lead to better WCET 
boundaries in these papers, leading to less conservative results. This 
applies to approaches based on both formal analysis [44] and heuris-
tics [12].

The methodology applied in this work can help study interference 
caused by intra-cluster and inter-cluster phenomena. Systematic ap-
proaches to perform memory interference characterization [45] can 
build upon the characterization presented in this paper to evaluate a 
wider spectrum of architectural phenomena than they already do.

Finally, our own ongoing work is built upon this methodology: by 
first creating a thorough interference characterization of the platform 
under consideration using the approach presented in this paper, it 
is possible to estimate the level of bandwidth regulation needed to 
reduce the slowdown of a critical task exactly to a precise quality 
of service (QoS) value, with very low error. This allows quick and 
precise bandwidth regulation, which in turn leads to proper throttling 
of non-critical tasks. Thanks to this approach based on the interference 
characterization, we observe very low hardware under-utilization in 
our experiments, while still reducing the slowdown to the expected QoS 
value.
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