
An open source research framework
for IoT-capable smart traffic lights

Gianluca Brilli, Paolo Burgio
University of Modena and Reggio Emilia, Italy

name.surname@unimore.it

ABSTRACT
Recent technological advances are completely reshaping the way
we build our cities, and the way we enjoy them. Future smart cities
will employ a number of smart sensors, which cooperatively work
to deliver advanced services that improve security and quality of
life. The capability of deploying and testing such technologies di-
rectly on-the-field is paramount to research, however comes with
a significant effort in terms of time and price. For this reason, we
introduce an open-source design framework for highly-connected
smart sensors, and we implemented it in an advanced controller for
traffic light, providing a single component to support researchers
and engineers from the earliest stages of development in laborato-
ries till on-the-field research and testing.

KEYWORDS
datasets, neural networks, gaze detection, text tagging

ACM Reference Format:
Gianluca Brilli, Paolo Burgio. 2019. An open source research framework for
IoT-capable smart traffic lights. In EAI International Conference on Smart
Objects and Technologies for Social Good (GoodTechs ’19), September 25–27,
2019, Valencia, Spain. ACM, New York, NY, USA, 6 pages. https://doi.org/10.
1145/3342428.3342692

1 INTRODUCTION
In the last ten years, advances in the field of embedded systems
enabled a new generation of power efficient, high-performance com-
puting platforms, that paved the way to future automotive systems
and smart transports. In future cities, vehicles and environmental
sensors such as traffic lights and cameras will be connected with
low-latency reliable media such as 5G, short-range DSRC/802.11p
WiFi [8, 13], Low-energy Bluetooth (BLE) and Zigbee [12], and
cooperatively exchange information to build a common vision of
the city environment, and deliver services to increase safety and
reduce pollution in our roads.

For instance, figure 1 shows a possible scenario where a vehicle
automatically adjusts its speed depending on the light phase and
time-to-change of a smart traffic light. This both increases safety
(no “last-second braking”), and reduces CO2 emissions by removing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
GoodTechs ’19, September 25–27, 2019, Valencia, Spain
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6261-0/19/09. . . $15.00
https://doi.org/10.1145/3342428.3342692

Figure 1: Connected traffic light to enable safe automatical
stop

unnecessary brakes and acceleration, since now the vehicle poten-
tially drives at constant speed. We foresee [2, 6] that the Global
Connected Car Market will value 220 million of dollars by 2025,
with North America having the highest number of connected ve-
hicles on their roads. Also, European countries are moving in this
direction: the European Union is promoting research in the field,
and allocated a significant budget for their H2020 program.

At the local level, several countries already created special urban
areas to test and stress vehicle-to-vehicle (V2V) and vehicle-to-
infrastructure (V2I) communication, and to research technologies
for the smart cities of tomorrow and autonomous driving. Many
projects involving smart city applications have been proposed in
the last decades with an increasing effort of providing urban en-
vironments with pervasive and ubiquitous computing capabilities
thanks to digitally instrumented devices [1]. This includes wire-
less/wired communication networks; remotely controlled utility
services; smarter and better synchronized public transport; traffic,
air and pollution sensors; security camera networks; smart public
lighting; mobile applications for citizens and tourists, etc. One of
the most notable European examples is given by SmartSantander 1,
an app providing information about multiple places in the city of
Santander, along with real time access to traffic and beaches cam-
eras, public buses information and bike-rental service. For the city
of London, an online city dashboard 2 provides similar live feeds.
The Italian city of Modena, recently developed the Automotive
Smart Area (MASA 3 – see Figure 2), an ambitious program to set
real urban laboratory of one square kilometer with 5G connectivity,
enabling multiple (IoT) devices (e.g., smart cameras, traffic scanner

1http://www.smartsantander.eu/
2http://citydashboard.org/london/
3https://www.automotivesmartarea.it/

https://doi.org/10.1145/3342428.3342692
https://doi.org/10.1145/3342428.3342692
https://doi.org/10.1145/3342428.3342692

GoodTechs ’19, September 25–27, 2019, Valencia, Spain Gianluca Brilli and Paolo Burgio

and counter, smart traffic lights...) to exchange massive amounts of
information to jointly cooperate for an efficient traffic management,
creating a so-called city distributed awareness of what happens in
the area. The existence of places such as MASA enables research in

Figure 2: The Modena Automotive Smart Area

the field, however, accessing them is cumbersome, because they are
public city areas, i.e., with limited access. For this reason, typically
researchers employ simulators (Such as MatSim [3]) at early stages
of their work, to efficiently test their solutions, before accessing the
“real” physical area. The main issue with simulators, is that sensors,
such as cameras and traffic lights cannot be accurately replicated,
especially with respect to communication latencies between them
and vehicles. Since communication between city sensors and vehi-
cles is the key aspect of such systems, researchers struggle to model
the timing behavior of such components in laboratories, at early
development stages, without having to wait to go “on the field” to
stress these functionalities. Unfortunately, this is not always possi-
ble, and especially sensors behave quite differently in simulators
and in “real” installations.

We want to tackle this problem, and in this this work we provide
an open-source, low-cost and easy-to-use software infrastructure
for smart city edge sensors, based on state-of-the-art, realistic low-
latency communication protocol. We instantiated it in a small con-
troller for traffic light, which runs on low-end computing platform,
a Raspberry Pi 3 [10], yet providing advanced functionalities such
as remote controller via a web-based frontend, and supporting sev-
eral communication protocols such as low-overhead UDP (used in
MASA), Modbus, and Https.

Section 2 describes both the communication protocol, and the
modular design of the controller. In section 3 we depict more in
details the hardware and software architecture implementation
depicted more in details This software is released open-source with
GPL license 4

2 SYSTEM DESIGN
Our goal is to build a traffic controller system that:

• is open-source, and easily instantiable and usable;

4https://github.com/HiPeRT/IoT-Semaphore

• supports a range of state-of-the-art communication proto-
cols;

• can easily be extended by adding modules;
• can be used at different stages of development, i.e., from
simulation in laboratory to “real” on-field deployment.

For this reason, the controller is implemented to run as a standalone
component on a Raspberry Pi 3, but we also provide instructions on
how to create the required electrical connectivity to drive a “real”
traffic light.

With respect to communication protocols, we want to be able
to remotely control the system, hence we implemented a control
console in a web page, which sends commands and receives the
status of the traffic light via a web-server. This is also released
as open-source. More in details, we employ three different lights
controllers, described in the next section, namely i) an internal
timer with pre-defined time phases, ii) an external webpage, which
enables complete control of the light phases and status; and iii)
a server/slave which accepts commands from an external master
using the Modbus protocol. Figure 3 depicts the hardware/software
structure of the semaphore. Please, note that this structure applies
to any sensor type (e.g., cameras, traffic sensors..).

Figure 3: System design

3 SYSTEM ARCHITECTURE
This section describes first the required electronic connectivity to
drive the phases of a real traffic lights, then shows how the software
controller is implemented.

3.1 Hardware Architecture
The heart of the system is based on the Raspberry Pi 3 Single
Board Computer [10], a board that embeds a Broadcom BCM2837
SoC [4] consisting of a 1.2 GHz 64-bit quad-core ARM Cortex-
A53 CPU and a 1 GB memory (shared with the GPU) LPDDR2.
Furthermore, the Raspberry Pi 3 is equipped with all the necessary
connectivity (GPIOs, Ethernet, WIFI, etc.) for the realization of
an IoT device connected to the external world and an adequate
computing capability with a power consumption of about 2Watt
[9], which makes it particularly suitable for implementing battery-
powered systems.

The traffic light power supply system is handled entirely by
a single 12 V car battery, to which are connected the required

An open source research framework
for IoT-capable smart traffic lights GoodTechs ’19, September 25–27, 2019, Valencia, Spain

Figure 4: The semaphore controller

voltage regulators that allow to serve all the voltages necessary
for powering the system in its entirety, including the lamps of the
traffic lights. In this way, in theory, the system can keep to work
for several weeks without human intervention. The switching of
the traffic light’s lamps connected to the control unit is managed
by relay boards (one for each traffic light) that are directly driven
by the GPIOs of the Raspberry Pi 3 itself. In figure 5 we can see the
schematic adopted for building the electronic of the system.

Figure 6: Electric scheme to connect the system with a real
traffic light

The main objective of the developed circuit is to amplify the
output voltage of the GPIOs of the Raspberry Pi 3, which is fixed to
3.3 V, through an external 5 V power supply and a BJT transistor
for each GPIO. By doing so, it is possible to supply the right voltage
to the relays.

3.2 Software Architecture
In this section, we describe the three main communication protocols
supported in our package. Thanks to its modularity, it can be easily
extended to support many more, however, these already cover, and

are representative of, state-of-the-art communication media for
next-generation smart cities.

Modbus. From the point of view of system connectivity to the
outside world, it was decided to exploit a wired connection (via
ethernet) for managing theModbus protocol [11]. Modbus is a serial
connection that over the years has become the de facto standard for
PLC communication in an industrial environment. As part of the
project, it was used through the Libmodbus library [5], a version
based on the TCP / IP stack. In this way a generic Modbus master
is able to control the traffic light crossroad. It was also decided to
interconnect the developed system with a server in the cloud by
means of a 4G LTE connection. In this way, through any device
connected to the Internet, it is possible to visualize and change the
status of the smart crossroad and obtain some relevant information,
including the time-to-green and the time-to-red , respectively the
time that elapses when the state changes from red to green and
from yellow to red. This information exchange happens via the
HTTPs protocol.

HTTPS server. We deployed an HTTPs server with a GUI that
enables i) real-time monitoring of the semaphore status and ii) send-
ing command to the semaphore controller. It is shown in figure 7.
The GUI is implemented as a simple static webpage, and it fetches
information through REST calls to a Web API, exchanging JSON
payload

1 {
2 " i d " : " SEM1 " ,
3 " modbus_ in i t " : t rue ,
4 " s t a t u s " : " Red " ,
5 " c t r l _ t y p e " : 3 , / / i n t e r n a l
6 " t ime_ to_change " : 4000 / / i n ms
7 }

Low-latency Real-Time UDP (MASA). In addition to the two
aforementioned protocols, we decided to integrate a socket-based
client-server communication mechanism, based on the UDP pro-
tocol, called MASA Protocol. UDP is an unacknowledged protocol,
which means that there is no mechanism to retransmit data that
has been lost during the communication. This characteristic makes

GoodTechs ’19, September 25–27, 2019, Valencia, Spain Gianluca Brilli and Paolo Burgio

Figure 5: Electric scheme to connect the system with a real traffic light

Figure 7: Web GUI for the traffic light

UDP superior for real-time communications, infact there are fewer
overheads that take up useful space, that could be used for sending
relevant data, making transmission quicker and potentially more
efficient. Also in this case we used an aggregator server that collects
all the data received from the traffic light crossroad and from the
other connected road users. The format of the messages used by
the MASA Protocol includes the following fields:

• Traffic Light Position: geographical position of each traffic
light, including latitude, longitude and orientation;

• Traffic Light Status: current state of lamps of each traffic
light;

• Time-To-Change: time left for each traffic light to change its
state.

An open source research framework
for IoT-capable smart traffic lights GoodTechs ’19, September 25–27, 2019, Valencia, Spain

The position parameters of each traffic light are specified by the
following fields inside the configuration file:

1 " semaphores " : [
2 {
3 " p o s i t i o n " : {
4 " l a t i t u d e " : 0 . 1 ,
5 " l o n g i t u d e " : 0 . 2 ,
6 " o r i e n t a t i o n " : 2
7 }
8 }
9]

If we need to use both Modbus and HTTPs connections at the
same time, we can configure the Raspberry Pi 3 connectivity as
follows:

1 auto e th0
2 a l low−ho tp lug e th0
3 i f a c e e th0 i n e t s t a t i c
4 add r e s s 1 6 9 . 2 5 4 . 5 3 . 1 7 0

1 auto wlan0
2 i f a c e wlan0 i n e t dhcp
3 wpa− s s i d Semaphore1
4 wpa−psk

In this case we have the eth0 interface for handling the Mod-
bus protocol (with static parameters) and the wlan0 interface for
connecting the system to a LTE router.

Internals, and configuration. From the software point of view,
a parallel control program was developed, in C++ language and
based on the POSIX Threads standard, specifically the following
parallel Tasks were provided:

Figure 8: caption

• Thread A: (internalCtrl4WayCrossroadThrd) responsible for
managing the parameters time-to-red and time-to-green. Es-
sentially it receives these two parameters from the calling
thread and takes care of decrementing and re-initializing
them when needed.

• Thread B: (tlPinsThrd) responsible for managing the pins of
the Raspberry Pi 3 in charge of handling the traffic light
lamps. Specifically it decodes the configuration parameters
received from the HTTP server and acts accordingly.

• Thread C: (serverHandlerThrd) manages the client-server in-
teraction of the developed system. In particular it receives
the configuration parameters from the HTTP server and
sends the status of the traffic light lamps to the server itself.

• Thread D: (modbusHandlerThrd) takes care of receiving in-
coming parameters from a control device configured as Mod-
bus Master.

From the implementation viewpoint, we implemented them using
POSIX Threads (PThreads [7]).

The control program can be configured through a JSON config-
uration file. The main parameters that we can configure are the
GPIOs that are connected to a single traffic light lamp:

1 " semaphores " : [
2 {
3 " / / " : " T r a f f i c L i gh t TLA1 " ,
4 " r−pin " : 1 8 ,
5 " g−pin " : 2 4 ,
6 " y−pin " : 25
7 }
8]

some generic configuration parameters as follows. In particular
we have to configure the control type of the crossroad, a parameter
that specifies from which source the Raspberry Pi 3 take the control.

The options that we have are: 1) the traffic light’s lamps are
controlled through the HTTP server. 2) The system that controls
the smart crossroad is a Modbus Master. 3) The phases of the traf-
fic lights are internally-timed, in this way we have access to the
aforementioned time-to-red and time-to-green parameters.

Finally the parameters (http_server.enable and http_server.url)
are used to enable and specify the HTTP server address.

1 " c t r l _ t y p e " : 3 ,
2 " h t t p _ s e r v e r . enab l e " : t rue ,
3

4 " / / " : "URL or IP add r e s s o f the IoT Se r v e r " ,
5 " h t t p _ s e r v e r . u r l " : " h t t p : / / your− s e r v e r . com "

If the Modbus connections is required, we can specify some
standard parameters, the most important ones are the IP / Port
configuration.

1 " modbus−master " : {
2 " ip−addr " : " 1 6 9 . 2 5 4 . 5 3 . 1 7 0 " ,
3 " po r t " : 1 502 ,
4 " debug " : 1
5 }

We can also specify the delay-times, expressed in seconds, for
every semaphore phase. This parameters are used only when the
control type is set to internal.

1 " d e l a y s " : {
2 " / / " : " Time f o r each t r a f f i c l i g h t phase exp r e s s ed in

seconds " ,
3 " R " : 1 0 ,
4 "G " : 8 ,
5 " Y " : 2
6 }

4 CONCLUSIONS
We proposed an open-source framework for testing IoT-capable
devices and sensors for smart cities. We implemented it in a smart
traffic light, which is connected via state-of-the-art communication
protocols, namely a “standard” 4/5G data connection, a short-range
DSRC/WiFi communication and industrial Modbus standard. It
provides a single software component for all development phases,
from early stages in the laboratory, to on-field deployment of a

GoodTechs ’19, September 25–27, 2019, Valencia, Spain Gianluca Brilli and Paolo Burgio

traffic light, provided a very simple electric connectivity via relays
is implemented. Also, we provide instruction for these. We also
released an HTTPs server to remotely control the traffic light, via a
web-page.

ACKNOWLEDGMENT
This work was supported by the Prystine Project, funded by Elec-
tronic Components and Systems for European Leadership Joint Un-
dertaking (ECSEL JU) in collaboration with the European Union’s
H2020 Framework Programme and National Authorities, under
grant agreement nÂř 783190, and by the Class project, funded by
European UnionâĂŹs Horizon 2020 research and innovation pro-
gramme under the grant agreement No 780622.

REFERENCES
[1] A. Greenfield. Everyware: The Dawning Age of Ubiquitous Computing. New

Riders, Boston, 2006.
[2] Allied Market Research. Connected Car Market by Technology (2G, 3G, and

4G/LTE), Connectivity Solutions (Integrated, Embedded, and Tethered), Service
(Driver Assistance, Safety, Entertainment, Well-being, Vehicle Management, and
Mobility Management), and End Market (OEM and Aftermarket): Global Oppor-
tunity Analysis and Industry Forecast, 2018 - 2025, 2018.

[3] M. Balmer, M. Rieser, K. Meister, D. Charypar, N. Lefebvre, and K. Nagel. Matsim-t:
Architecture and simulation times.

[4] Broadcom Corporation. Broadcom BCM2837.
[5] Libmodbus. A Modbus library for Linux, Mac OS X, FreeBSD, QNX and Win32.
[6] Market Watch. Global Connected Vehicle and Telematics Market with Blooming

CAGR in Forecast Period 2019 to 2026, 2019.
[7] F. Mueller. Pthreads library interface. Technical report, 1999.
[8] Y. Y. Nasrallah, I. Al-Anbagi, and H. T. Mouftah. A quality of service model for

ieee 802.11p communication protocol in a smart city. In 2014 Global Information
Infrastructure and Networking Symposium (GIIS), pages 1–3, Sep. 2014.

[9] pidramble.com. Power Consumption Benchmarks.
[10] Raspberry Pi Foundation. Raspberry Pi 3 Model B, 2016.
[11] The Modbus Organization. Modbus.
[12] The Zigbee Alliance. The Zigbee Portocol, 2002.
[13] Wikipedia. Dedicated Short-Range Communication, 2003.

	Abstract
	1 Introduction
	2 System design
	3 System Architecture
	3.1 Hardware Architecture
	3.2 Software Architecture

	4 Conclusions
	References

