
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 8, AUGUST 2015 1

Fine-Grained QoS Control via Tightly-Coupled
Bandwidth Monitoring and Regulation for

FPGA-based Heterogeneous SoCs
Giacomo Valente, , Gianluca Brilli, , Member, IEEE, Tania Di Mascio, , Member, IEEE, Alessandro

Capotondi, , Member, IEEE, Paolo Burgio, , Member, IEEE, Paolo Valente, , Member, IEEE, Andrea
Marongiu, , Member, IEEE

Abstract—Commercial embedded systems increasingly rely on heterogeneous architectures that integrate general-purpose,
multi-core processors, and various hardware accelerators on the same chip. This provides the high performance required by modern
applications at a low cost and low power consumption, but at the same time poses new challenges. Hardware resource sharing at
various levels, and in particular at the main memory controller level, results in slower execution time for the application tasks, ultimately
making the system unpredictable from the point of view of timing. To enable the adoption of heterogeneous systems-on-chip (SoCs) in
the domain of timing-critical applications several hardware and software approaches have been proposed, bandwidth regulation based
on monitoring and throttling being one of the most widely adopted. Existing solutions, however, are either too coarse-grained, limiting
the control over computing engines activities, or strongly platform-dependent, addressing the problem only for specific SoCs. This
paper proposes an innovative approach that can accurately control main memory bandwidth usage in FPGA-based heterogeneous
SoCs. In particular, it controls system bandwidth by connecting a runtime bandwidth regulation component to FPGA-based
accelerators. Our solution offers dynamically configurable, fine-grained bandwidth regulation – to adapt to the varying requirements of
the application over time – at a very low overhead. Furthermore, it is entirely platform-independent, capable of integration with any
FPGA-based accelerator. Developed at the register-transfer level using a reference SoC platform, it is designed for easy compatibility
with any FPGA-based SoC. Experimental results conducted on the Xilinx Zynq UltraScale+ platform demonstrate that our approach (i)
is more than 100× faster than loosely-coupled, software controlled regulators; (ii) is capable of exploiting the system bandwidth 28.7%
more efficiently than tightly-coupled hardware regulators (e.g., ARM CoreLink QoS-400, where available); (iii) enables task
co-scheduling solutions not feasible with state-of-the-art bandwidth regulation methods.

Index Terms—Embedded Systems, Memory Interference, Bandwidth Monitoring, Bandwidth Regulation

✦

1 INTRODUCTION1

THE current generation of embedded systems widely2

relies on Heterogeneous System on Chips (HeSoCs)3

where general-purpose multi-cores are coupled to HW ac-4

celerators and application-specific processors [1]–[3]. The5

adoption of such systems provides abundant computing6

power to satisfy the needs of modern applications, with7

plenty of SW and HW tasks executing in parallel, but –8

at the same time – poses novel challenges. In particular,9

as the number of on-chip compute engines (CE) grows –10

including higher CPU and GPU core counts, as well as11

more application-specific accelerators – the interference due12

to main memory sharing significantly impacts the appli-13

cation tasks’ execution time [4], [5]; in turn, this makes14

the system unpredictable from the point of view of tim-15

ing. This constitutes a major problem for the adoption of16

• G. Valente and T. Di Mascio are with DISIM Department, Uni-
versity of L’Aquila, 67100 L’Aquila, Italy. E-mail: {giacomo.valente,
tania.dimascio}@univaq.it

• G. Brilli, A. Capotondi, P. Burgio, P. Valente, and A. Marongiu are
with Department of Physics, Informatics, and Mathematics, Univer-
sity of Modena and Reggio Emilia, 41125 Modena, Italy. E-mails:
{gianluca.brilli, alessandro.capotondi, paolo.burgio, paolo.valente, an-
drea.marongiu}@unimore.it

Manuscript received Jul 17, 2024; revised Nov 08, 2024.

Commercial Off-the-shelf (COTS) HeSoCs in application 17

domains where timing predictability is required [6]. Sev- 18

eral solutions have been proposed to tackle this problem, 19

ranging from static memory partitioning techniques [7] to 20

task execution models that guarantee predictable memory 21

access [8] and memory bandwidth regulation strategies [9]. 22

The latter, in particular, are increasingly being made avail- 23

able also in commercial products [10]–[12], and rely on 24

bandwidth monitoring and throttling mechanisms. Throttling 25

is an effective way of limiting the bandwidth allowed for a 26

particular CE by interspersing the required memory trans- 27

action with idle periods at the system bus/interconnection 28

level, typically at the granularity of small bursts of few 29

hundred bytes [13]. To satisfy the Quality of Service (QoS) 30

requirement of one (or more) critical CE, the remaining CEs 31

should have their bandwidth usage limited to a degree that 32

does not slow down the execution time of the critical task 33

beyond what is tolerated. Throttling should only be applied 34

to the minimum extent necessary to satisfy the predictability 35

requirements. Any bandwidth that remains unused should 36

be made available for reuse by other system components. 37

This unused bandwidth is referred to as residual bandwidth. 38

Statically configuring the QoS level of every CE in the 39

system is ineffective in contexts where several HW and SW 40

tasks come and go in a very dynamic manner, for several 41

https://orcid.org/0000-0002-0155-3788
https://orcid.org/0000-0003-4387-5774
https://orcid.org/0000-0002-8069-1168
https://orcid.org/0000-0001-8705-0761
https://orcid.org/0000-0003-1954-7201
https://orcid.org/0000-0002-1842-4974
https://orcid.org/0000-0003-1010-4762


IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 8, AUGUST 2015 2

reasons: (i) the same CE can host different tasks over time,42

with different predictability requirements; (ii) different tasks43

might exhibit different use of the memory bandwidth, thus44

contributing to the interference phenomenon to different45

degrees; (iii) the QoS regulations for the CEs hosting such46

tasks change depending of the overall system load in that47

particular moment (i.e., the number of CEs concurrently48

accessing memory and mutually interfering on execution49

time).50

QoS regulation and throttling should thus rely on con-51

tinuous monitoring of the actual bandwidth usage by the52

various CEs, resulting in a coupled interaction between the53

monitoring and throttling phases operating in a closed-loop54

manner. In the literature, the concept of a System Controller55

has been proposed [14], which, upon the admission of a56

new task to the system or the completion of a previously57

admitted task, inspects the bandwidth usage of all running58

tasks and resets the QoS regulations for all the involved CEs.59

Intuitively, the finer the granularity at which this operation60

can be achieved, the wider the scope of application of the61

technique. For example, in application domains such as62

advanced system automation (e.g., robotics, autonomous63

cars, unmanned aerial vehicles), numerous HW and SW64

tasks with durations and periods below the millisecond65

boundary are involved [15], [16]. The granularity of the66

technique depends mainly on two aspects: (i) the size of the67

unit data transfer that is monitored and upon the duration68

of which the idle period is determined; (ii) the coupling69

between monitoring and throttling. Concerning the first point,70

intuitively the smaller the data transfer, the shorter the71

time to complete a full regulation cycle but also the more72

impactful the overhead for the monitoring operation itself.73

Concerning the second point, the closed-loop interaction74

between monitoring and throttling also implies an overhead,75

which can only be reduced by tightly coupling the operation76

of these two phases. Needless to say, the looser the coupling,77

the less precise the QoS guarantee provided on critical tasks.78

Focusing on commercial HeSoCs based on Field-79

Programmable Gate-Arrays (FPGA), previous research80

has mostly explored software-based, loosely-coupled ap-81

proaches for bandwidth regulation on the CPU cores. These82

methods have been explored both in industry [17], [18] and83

academic [14], [16], [19], [20], with only few approaches84

targeting the regulation of accelerators deployed on the85

FPGA logic and rarely considering interference at the whole86

SoC level [21]. Hardware-based approaches, both from the87

research community [22]–[24] and from commercial prod-88

ucts [13], [25], [26], although more fine-grained and tightly-89

coupled, tend to address the problem only for specific SoCs90

or interconnect protocols, limiting their application to those91

platforms where such hardware is available.92

In this paper, which is a significantly extended version93

of previously published work [27], we propose an innova-94

tive, fine-grained and platform-independent Runtime Bandwidth95

Regulator (RBR) for disciplined main memory bandwidth us-96

age in COTS FPGA-based HeSoCs. The RBR is meant as a97

non-invasive extension of a standard Direct-Memory Ac-98

cess (DMA) interface for FPGA-based accelerators, aimed99

at delivering tightly-coupled monitoring and throttling of100

main memory bandwidth, effectively delivering the desired101

QoS levels with high precision while efficiently exploiting102

the residual bandwidth. The proposed RBR quickly adapts 103

to time-varying QoS levels and is completely platform- 104

independent, as it is developed targeting a general reference 105

architecture of an FPGA-based HeSoC and implemented as 106

an HDL design that can be synthesized to every FPGA- 107

based HeSoC with minimal area and time overhead. 108

Our experimental results show that the proposed tightly- 109

coupled bandwidth regulation scheme can precisely track 110

and very quickly adapt to dynamic QoS variations as small 111

as 1% with a timing resolution – defined as the minimum 112

time interval required to adjust the bandwidth to a specific 113

value – of just 32µs for an entire worst-case regulation cycle 114

(99% of the cycle is idle time). If coarser regulation steps 115

resolutions are sufficient for the application at hand, the 116

RBR can be reconfigured at runtime to operate at a finer 117

timing resolution of up to 0.33µs for the entire worst-case 118

regulation cycle. 119

This approach makes bandwidth regulation highly ef- 120

fective for applications with timing resolution one to two 121

orders of magnitude finer than what is achievable with 122

state-of-the-art solutions [19], [20] based on loosely-coupled, 123

SW-controlled monitoring + throttling. Although fully HW- 124

based regulation is not always available on COTS platforms, 125

we also compare our proposal to the ARM CoreLink QoS400 126

regulators. Experimental results show that we achieve com- 127

parable regulation speed to QoS-400, with a finer regulation 128

step and 28.7% better exploitation of the residual bandwidth. 129

This allows a higher number of SW and HW tasks to safely 130

co-execute compared to other approaches, where a less effi- 131

cient system-wide exploitation of the system bandwidth can 132

only meet the QoS requirements by conservatively reducing 133

the number of CEs accessing main memory in parallel. 134

The rest of the paper is organized as follows: Section 2 135

positions our contribution with respect to related work. Sec- 136

tion 3 introduces background information on top of which 137

we build our proposal. Section 4 presents the proposed 138

tightly-coupled regulation mechanism. Section 5 provides 139

the evaluation of the proposed mechanisms on the Zynq 140

UltraScale+ platform. Section 6 concludes the paper. 141

2 RELATED WORK 142

Memory interference can be very impactful on the per- 143

formance of modern HeSoCs. This has motivated a lot of 144

characterization work in the recent past, focusing on the 145

effects on the main CPU [4], [28], GPGPU accelerators [29], 146

[30], FPGA-based accelerators [21], [31], and external I/O 147

components [10], [32], [33]. All the previous work showed 148

that unmanaged concurrent accesses to main memory on 149

HeSoCs can lead to dramatic slowdowns, making the sys- 150

tem unpredictable from the point of view of timing behav- 151

ior. 152

A simple, widespread approach to mitigating these ef- 153

fects is that of enforcing mutually exclusive memory access 154

to the main memory (DRAM) [28]. Several works rely on 155

this principle [8], [34]–[36] across a wide range of target ar- 156

chitectures, granularity settings and scheduling approaches. 157

Although functional, these approaches are often too con- 158

servative and pessimistic, as their one-at-a-time execution 159

model induces a severe under-utilization of the available 160



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 8, AUGUST 2015 3

DRAM bandwidth in modern HeSoCs, limiting the overall161

throughput.162

Other works try to overcome such underutilization by163

allowing a controlled number of tasks to access DRAM at164

the same time [37], [38]. Task-based scheduling for memory165

accesses, however, does not allow for fine-grained control.166

Other approaches improve DRAM bandwidth usage by167

relying on offline profiling to devise efficient task scheduling168

and bandwidth allocation [39], [40]. The main limitation169

of such approaches resides in their static nature, which is170

not always practical or altogether feasible in the context of171

modern time-critical applications. Controlled Memory Re-172

quest Injection (CMRI) [41] also allows more than one task173

at a time to access DRAM, interspersing memory requests174

from the tasks with a controlled amount of idle cycles.175

This is achieved by wrapping task execution within fine-176

grained, controllable duty cycles. Both compiler-level code177

instrumentation and dynamic task throttling, at SW-level178

(e.g., the Memguard solution [19]), hypervisor-level [42], or179

DMA-level [21], can be used to implement the duty cycling.180

However, CMRI techniques are limited to millisecond-scale181

timing resolution. As noted in the works [14], [16], attempt-182

ing to regulate bandwidth at a sub-millisecond timing reso-183

lution with CMRI techniques results in substantial overhead184

(i.e., slowdown on the regulated task) – up to 10% for a185

timing resolution of 100 us – making them unsuitable for186

applications demanding finer timing control.187

New techniques are being introduced to protect real-188

time applications running on CPU cores from memory in-189

terference, achieving sub-millisecond timing resolution [14],190

[16]. This shift to finer timing resolution is made possible191

by dedicated hardware components that handle bandwidth192

monitoring and throttling. By offloading these operations193

from the CPU, the components significantly reduce the194

processing load on the system, allowing for more precise195

control of memory access and ensuring minimal interference196

with real-time operations.197

Saeed et al. [14] developed a mechanism to control198

memory interference by considering DRAM utilization199

through HW performance monitors and regulating inter-200

ference sources at the task execution level on a per-core201

basis. Their solution employs core-managed interrupts from202

HW performance monitors, leading to a high regulation203

overhead that prevents a finer timing resolution than 500204

us. To achieve finer timing resolution regulation, Zuepke205

et al. [16] introduced MemPol, a BR mechanism that uses206

HW performance monitors for monitoring and debugging207

mechanisms for bandwidth control. The approach relies208

on a dedicated core to control the monitoring and throt-209

tling loop with tighter coupling compared to other SW210

approaches, thereby significantly reducing the associated211

overhead. Although its experimental evaluation has been212

conducted on FPGA-based HeSoCs, MemPol – like all the213

other approaches cited up to this point – focuses on BR214

across CPU cores only, with currently no support for the215

control of HW accelerators. Also Farshchi et al. [9], who216

rely on the FPGA logic on a HeSoC to implement a HW217

throttler, uses the programmable logic only as a medium to218

control the traffic between the CPU and the shared buses,219

not to host accelerators. The solution offers loosely-coupled220

monitoring + throttling and a fairly coarse granularity due221

to the loose physical coupling between the CPU and the 222

FPGA on the SoC, and to the slow speed of the FPGA logic 223

compared to that of the CPU. 224

HW support for managing QoS and fairness at various 225

levels of the interconnect hierarchy is increasingly being 226

offered on commercial HeSoCs (e.g., ARM QoS400 [13], 227

QVN400 [25], MPAM [26]). The availability of such support 228

on current systems is however still very limited, sometimes 229

only partial and typically very poorly documented (as high- 230

lighted in [10], [12]). Schwaricke et al. [20] used the ARM 231

QoS400 for BR to ensure predictable data transfers between 232

virtual machines. Their loosely-coupled approach is lim- 233

ited to AXI-based architectures [43], reducing its portability 234

across different architectures. Other HW mechanisms have 235

been proposed for BR on FPGA-based HeSoCs [22]–[24], 236

again specifically targeted at AXI interconnect protocols. 237

Here the bus activity is monitored to regulate the tasks 238

executed on HW accelerators. Although these approaches, 239

like ours, focus on BR for the HW accelerators in FPGA, 240

the technique focuses on bus-level regulation, whereas our 241

proposal tightly couples the monitoring and throttling logic 242

with the DMA unit of the accelerator itself. Compared to 243

these papers, from the point of view of the evaluation our 244

focus is on interference at the whole SoC level, not the FPGA 245

only. Moreover, our proposal (and the associated evaluation 246

section) also focuses on efficient exploitation of the residual 247

bandwidth. To the best of our knowledge, MemPol [16] 248

is the only other work that evaluates this aspect, while 249

compared to commercial solutions [13] our RBR achieved 250

up to 28.7% better usage of the residual bandwidth. 251

In a nutshell, the proposed RBR design tackles the 252

challenge of achieving fine-grained regulation of the FPGA- 253

based accelerators’ bandwidth on commercial HeSoCs by 254

integrating a lightweight HW monitoring system and a 255

bandwidth throttler with the most typical interface to the 256

outer memory of an accelerator, the DMA. The RBR can be 257

seamlessly incorporated into any generic FPGA-based accel- 258

erator design with minimal overhead. The RBR dynamically 259

and precisely controls the memory bandwidth generated 260

by the accelerator, enhancing precise QoS control of critical 261

tasks in the system and efficient overall system bandwidth 262

utilization. 263

3 BACKGROUND 264

Fig. 1 shows a simplified block diagram of the reference 265

FPGA-based HeSoC. In this template, the main host multi- 266

core CPU shares the main DRAM memory with the FPGA 267

logic. Here, one or more application-specific accelerators can 268

be deployed. Internally, every accelerator includes a datapath, 269

namely the core logic that performs the computation, and 270

an efficient DMA engine, used to facilitate the staging of 271

data from the DRAM into faster local memories. In modern 272

HeSoCs, the DMAs inside FPGA-based accelerators gen- 273

erate much higher DRAM bandwidth requests than what 274

happens on the CPU cores [12], [31] (e.g., in [44], [45] 275

HeSoCs). This is because CPU cores typically generate a 276

limited number of read and write transactions to memory, 277

constrained by the number of in-flight memory operations 278

they can handle. In contrast, FPGA designs allow multiple 279

accelerators to be connected to the same memory port, 280



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 8, AUGUST 2015 4

Fig. 1: Architectural template of the target HeSoC.

Fig. 2: Tasks scheduling and memory bandwidth regulation.

enabling numerous independent memory requests. If CPU281

cores and FPGA-based accelerators run in parallel without282

DRAM access control, the execution time of the CPU tasks283

can slow down by over 10× [31]. On the other hand, enforc-284

ing mutually exclusive DRAM accesses by CPU and FPGA285

causes severe under-utilization of the available memory286

bandwidth.287

Monitoring bandwidth usage from the FPGA-based ac-288

celerators on COTS HeSoCs can be done by querying in289

SW the performance monitors (PM). PMs are widely available290

in commercial platforms at various points in the system291

interconnect, and it is also possible to instantiate similar IPs292

in the FPGA logic. Intuitively, if said SW executes on the293

main host CPU there will be significant overhead involved294

for the monitoring phase, due to the very loose coupling295

between the host CPU and the FPGA-based accelerator.296

However, it is more and more common to enrich accelerator297

templates with a soft core for local control of the datapath and298

DMA operation, without the need for the costly intervention299

of the main CPU [46]–[49]. This tightens the coupling and300

reduces the overhead.301

Throttling FPGA accelerators can be done by splitting long302

DMA bursts into several smaller chunks, each of which can303

be followed by a number of idle cycles (indicated as idlecc),304

determined to reduce the used bandwidth to the percent 305

value specified by the Throttling Factor (THR%). The number 306

of idlecc can be computed as a function of the cycles taken 307

to complete the transfer of the chunk (referred to as copy 308

cycles, indicated as copycc) and the THR%, as shown in 309

Eq. (1): 310

idlecc =
100− THR%

THR%
· copycc (1)

311

Note that THR% = 100 means 100% bandwidth granted; 312

THR% = 1 means 1% bandwidth granted. Previous work 313

has explored the use of the soft cores for programming the 314

DMA in a duty-cycled loop according to Eq. (1) [21]. The 315

main drawback of throttling accelerators via SW is the high 316

programming overhead, which prevents its usage when 317

fine-grained operation is needed. In the following we con- 318

sider the fully SW-based monitoring + throttling approach 319

as our reference example of loosely-coupled, coarse-grained 320

bandwidth regulation scheme. 321

Some commercial HeSoCs include support for fine- 322

grained bandwidth regulation at the level of individual 323

master ports (e.g., QoS400 [13], QVN400 [25]). Although 324

these solutions are not universally supported across vendors 325

and SoCs, in the following we consider QoS400 as our ref- 326

erence, state-of-the-art example of fine-grained bandwidth 327

regulation scheme. 328

Considering the dynamic operation of a real-time sys- 329

tem, where tasks come and go continuously – and thus a dif- 330

ferent number of actors is simultaneously accessing DRAM 331

at different time instants – we need to re-evaluate often 332

the throttling factors to be applied to each accelerator to 333

make sure that two requirements are fulfilled: (i) the timing 334

guarantees are respected for every task; (ii) overall DRAM 335

bandwidth usage (i.e., residual bandwidth) is maximized. 336

This situation is illustrated in Fig. 2. Here the application 337

that is running on the Host CPU spawns new SW and 338

HW tasks over time. The figure shows, in particular, the 339

offloading of computation on the FPGA-based accelerators 340

– i.e., the creation of new HW tasks T1, T2, T3 – at time 341

instants t0, t1, t2 and the termination of tasks T1 and T3 at 342

time instants t3 and t4. Upon the admission of every new 343

task in the system or the termination of an old task, some 344

sort of System Level Bandwidth Controller (SLBC) could re- 345

evaluate the THR% settings for every FPGA-based acceler- 346

ator. The period of the SLBC policy is designed according to 347

the requirements of the application domain: in autonomous 348

systems applications new tasks can be admitted into the 349

system with µs-scale frequency [15], [16]. With such a short 350

time period in which THR% settings can change, it is 351

fundamental to design the low-level bandwidth regulation 352

(BR) mechanism to be as responsive and tight as possible, 353

ensuring a fine timing resolution. 354

The BR timing resolution includes three components: 355

(i) the time to transfer the chunk of data (referred to as 356

monitoring process), which depends on the chunk size and 357

the data size of the transfer and is typically provided by 358

a monitoring system; (ii) the time to compute the idlecc, 359

which is influenced by the implementation of the BR control 360

logic; and (iii) the time to perform the throttling, which 361

varies according to the THR% requirements. Without loss 362



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 8, AUGUST 2015 5

Fig. 3: Worst-case timing resolution (THR% = 1%). The worst-case timing resolution should not exceed the SLBC period
to avoid missing new THR% settings.

of generality, in our scenario, we assume that the smallest363

bandwidth regulation value is THR% = 1%. In case of364

THR% = 1%, if the monitoring process takes copycc = n365

clock cycles, by applying Eq. (1) the throttling would need366

to introduce idlecc = 99n, giving a total timing resolution367

of 99n + n = 100n. This represents the worst-case timing368

resolution in our scenario.369

In addition to components (i) (ii), and (iii), the coupling370

between the monitoring and the throttling elements intro-371

duces some overhead, which further impacts the timing372

resolution. Specifically, this coupling overhead arises from373

the necessity for the BR to query the copycc before the374

computation of idlecc, and the need to configure the throt-375

tling mechanism using the calculated idlecc. Intuitively, the376

tighter the coupling of the two elements, the shorter the time377

to complete the monitoring + throttling control loop, and thus378

the more amenable the timing resolution to the described379

autonomous systems scenarios. For example, if a particular380

SoC platform provides HW mechanisms for BW monitoring381

and throttling, these will individually be very fast, but their382

coupling is however controlled via SW, which is very loose383

in terms of responsiveness.384

Fig. 3 illustrates the scenario of worst-case timing res-385

olution. Allowing the timing resolution of BR to exceed386

the SLBC period would mean that the BR mechanism is387

not capable of adapting quickly enough to the application388

requirements, and thus it is not capable of providing the389

required timing guarantees. Section 5 provides a detailed390

analysis of the overhead implied by, and thus the speed of,391

different BR techniques.392

4 RUNTIME BANDWIDTH REGULATOR393

In the following, we present the proposed Runtime Band-394

width Regulator (RBR), which enables accurate BR of FPGA395

accelerators with minimal overheads.396

4.1 Runtime Bandwidth Regulator Architecture397

Since the main interface of an accelerator to the DRAM is the398

DMA, we suggest that bandwidth monitoring and throttling399

for its operation should happen at this level. The RBR is thus400

introduced as a non-intrusive component of the accelerator 401

template, as shown in Fig. 4. It contains two main blocks: 402

(i) a monitor that probes the outgoing channel to the DRAM 403

to unobtrusively measure the time (copycc from Eq. (1)) to 404

transfer an amount of bytes configured via a parameter 405

called the threshold (which defines the granularity of the 406

technique); (ii) a throttler that computes the idlecc as a 407

function of the copycc and throttling factor THR%, and stops 408

DMA operations for that amount of time. It is worth noting 409

that the RBR can work with bytes transferred through 410

either read or write transactions. To avoid complicating 411

the presentation, in the following, we consider just one 412

type of transactions (the same considerations apply to the 413

other). The value of the threshold, and the throttling factor 414

THR% are provided during RBR configuration via the soft 415

core1. This is expected to happen every time the underlying 416

middleware (e.g., the RTOS or the hypervisor) modifies 417

the QoS requirements for the tasks currently scheduled, for 418

example because a new task has been just admitted. 419

The copycc required to transfer threshold bytes can sig- 420

nificantly vary based on the load of the system. While 421

in absence of contention this transfer would usually take 422

nomcc nominal cycles to complete, under heavy contention 423

the actual copycc can grow significantly. Applying Eq. (1) in 424

such scenario would further penalize the core/accelerator 425

that has suffered this slowdown during memory transfer 426

by further imposing an amount of idlecc that is computed 427

based on this slowed-down transfer time. Any BR mech- 428

anism is thus typically capable of detecting contention- 429

induced slowdown and to accordingly computing the ap- 430

propriate amount of idlecc. Our RBR mechanism does that 431

as follows: 432

idlecc = max {δ · nomcc − (copycc − nomcc), 0} (2)

1. Note that the configuration happens via memory-mapped regis-
ters, so the main or a secondary CPU could also configure threshold and
THR%, albeit with a higher latency compared to the soft core.



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 8, AUGUST 2015 6

Fig. 4: The FPGA accelerator with the RBR. Fig. 5: RBR internal design.

where:433

δ =
100− THR%

THR%
(3)

The first term of Eq. (2) first computes the idle cycles434

in nominal conditions as δ · nomcc. Then, those extra cycles435

that the transaction already took to complete because of the436

interference, are subtracted. The max function is introduced437

to prevent idlecc assuming negative values. With reference438

to Eq. (2), during the RBR configuration stage, THR%,439

threshold, and nomcc are provided. Specifically, when the440

THR% value is supplied, the soft-core processor computes441

the corresponding δ value using Eq. (3). Instead of providing442

the raw THR% value to the RBR, the pre-computed δ value443

is sent directly. This prevents the RBR from performing444

floating point divisions, ensuring it does not impact the445

target frequency of the whole design. On the other hand,446

the nomcc value (i.e., the number of clock cycles that a447

transfer of threshold size would take without contention) is448

recalculated by the soft processor whenever the threshold449

value changes, based on the specific characteristics of the450

throttled bus.451

A close-up of the internals of the RBR is shown in Fig. 5.452

Upon RBR configuration, the threshold, nomcc, and THR%453

values are stored into a Controller block in the monitor. It is454

worth noting that all the sequential blocks work in the same455

clock domain and they are indicated with a triangle inside456

(highlighting the fact that they work at rising edge of the457

clock). The clock signal is not reported.458

The monitor is developed by using the framework pro-459

posed in [50]; the monitor relies on a Timer block to mea-460

sure the copycc. For every byte read through the outgoing461

channel to the DRAM, a Counter Enabler activates the in-462

crement of a Counter Up. An Equality Comparator detects463

when the threshold has been reached; when that happens,464

the Equality Comparator asserts an idle valid signal, to trigger465

the operation of the throttler, and to reset the Timer and the466

Counter Up blocks. The monitor operates in a single clock467

cycle: upon observing the transmission of the last byte of468

the sequence (i.e., upon reaching the threshold), the idle valid469

signal is asserted within the same clock cycle.470

The throttler receives three inputs: copycc, nomcc, and 471

THR% (expressed as δ of Eq. (3)), which are provided by the 472

monitor. To compute the idlecc, it relies on a Weigher block. 473

The Weigher takes these inputs, where δ is represented in 474

fixed-point format, and calculates Eq. (2) in a fully combi- 475

natorial manner, ensuring an efficient computation of the 476

throttling cycle idle time based on the provided values. For 477

every rising-edge of idle valid signal, the Weigher output 478

idlecc is written inside a down counter (Counter DWN) 479

block, which also triggers the operation of a second equality 480

comparator, referred to as Smart Comparator block. This 481

block acts as a state machine that transitions between a 482

PASS-THROUGH and a WAIT state. As long as the Counter 483

DWN contains a number higher than zero, the Equality 484

Comparator remains in the WAIT state. In this state, DRAM 485

accesses from the accelerator are blocked. The throttler also 486

operates in one clock cycle: when the Throttler receives the 487

rising edge of idle valid signal, it takes one clock cycle to 488

stop the DRAM access from the accelerator. 489

4.2 Runtime Bandwidth Regulator SoC Integration 490

The proposed RBR fully offloads accelerator control from 491

the main CPU and is fully platform-independent as it was 492

designed with a generic and representative reference archi- 493

tecture for an FPGA-based HeSoC. Porting the solution to 494

a specific architecture only requires adapting the outbound 495

monitoring and throttling signals to match the bus protocol. 496

For example, consider an accelerator with a DMA con- 497

nected to the main memory through an AMBA AXI4 bus 498

with a data bus size of 128-bit [43], operating at a frequency 499

of 300 MHz. In this setup, the accelerator can achieve a 500

maximum bandwidth of 4.8 GB/s for both read and write 501

transactions. Suppose we want to regulate the bandwidth 502

so that the accelerator reads at 30% and writes at 50% 503

of the maximum bandwidth, corresponding to 1.44 GB/s 504

for reading and 2.4 GB/s for writing. In this scenario, we 505

connect two instances of RBR, one for each channel. For BR 506

of the writes, the monitor block inside the RBR takes the 507

signals wvalid (from the master), wready (from the slave), 508

and wstrobe (from the master) to count the transmitted data, 509



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 8, AUGUST 2015 7

(a) Bandwidth regulation of the AXI4 read channel using
thresholdrd ← 512 Bytes and THR%rd ← 30%. The resulting
bandwidth is 1.44 GB/s.

(b) Bandwidth regulation of the AXI4 write channel using
thresholdwr ← 1024 Bytes and THR%wr ← 50%. The result-
ing bandwidth is 2.40 GB/s.

Fig. 6: Example scenario with a read and write memory bandwidth regulation using RBR.

while the throttler takes as input wvalid and wready and510

propagates them as output when in PASS-THROUGH state.511

When in the WAIT state, the throttler blocks both wvalid and512

wready, pausing the communication. For BR of the reads, the513

monitor block takes only rvalid (from the slave) and rready514

(from the master), while the throttler takes the pair rvalid515

and rready, propagating or blocking them in case of PASS-516

THROUGH or WAIT state, respectively.517

To demonstrate the RBR functionality, we set different518

thresholds for reads and writes: thresholdrd ← 512 Bytes for519

reads and thresholdwr ← 1024 Bytes for writes. Considering520

the size of the data bus at 128-bit, this produces nomcc,rd=32521

and nomcc,wr=64. The RBR throttlers are configured with522

THR%rd ← 30% and THR%wr ← 50% for reads and writes,523

respectively. The timing diagrams of the regulator activity524

are shown in Fig. 6a and Fig. 6b. Focusing on Fig. 6a, when525

the first byte of the DMA read transaction flows through the526

AXI4 bus, the monitor activates its internal timer. After the527

512th byte is transmitted, the monitor forwards the copycc528

to the throttler (during the rising edge of the idle valid529

signal). The throttler then computes the idlecc and pauses530

the communication accordingly. Once the idle period ends,531

the throttler resumes communication. This monitor-throttle532

loop repeats every 512 bytes, resulting in 1200 iterations533

for a 600 kB transfer. The writing process in Fig. 6b works534

similarly. As shown in Fig. 6a and Fig. 6b, the obtained535

bandwidth meets the requirements.536

The timing resolution of the BR depends on the threshold537

value, which can be configured as needed. However, the538

choice of the threshold has a direct impact on the accuracy539

of the idlecc computation and insertion performed by the540

RBR. Here, accuracy is defined as the deviation between541

the expected value of idlecc needed to achieve a specific542

bandwidth and the actual value computed and introduced543

by the RBR. This accuracy in turn influences the resolution544

of the BR step, which should be further evaluated.545

4.3 Choosing the threshold546

As described is Section 3 and shown in Fig. 3, the worst-case547

setting for the THR% parameter, which is 1%, lengthens548

the overall BR cycle duration (monitoring + throttling) to549

100× the monitoring time. Thus, intuitively, the finer the550

granularity of the monitoring (i.e., the smaller the threshold551

parameter) the better. With our technique, the threshold can552

be as small as the size of the AXI4 bus, which is at maximum553

Fig. 7: Accuracy of the bandwidth regulation as a function
of THR% for various granularities.

1 beat = 16 Bytes on Zynq Ultrascale+ devices [44]. However, 554

the downside of picking a very small threshold value is a loss 555

of accuracy in the idlecc computation and insertion. 556

TABLE 1: RBR timing resolution and regulation step res-
olution for THR%=1% for various threshold values. The
regulation step resolution is expressed with respect to the
THR% value of the previous regulation cycle.

Threshold (bytes) 16 64 256 1536
Timing resolution [µs] 0.33 1.32 5.28 31.68

Regulation step resolution 50% 20% 5.88% 1%

Fig. 7 shows this effect by plotting how accurately dif- 557

ferent threshold settings (different curves) allow the BR in 558

RBR (Y axis) to match the required THR% in the full [1%, 559

100%] range (X-axis). It is clear from the plot that choosing 560

a small monitoring threshold negatively affects the accuracy 561

of the BR for high THR% values. A threshold setting of 1 beat 562

implies that the technique can just exploit an on/off decision 563

with respect to the introduction of idlecc: the next beat 564

transfer can either be immediately issued or skipped for the 565

next bus cycle. This results in either 100% or 50% BR, which 566

affects the regulation step resolution, with no additional 567

feasible settings in between, as illustrated by the blue curve. 568

The grey curve is obtained with a threshold of 1536 Bytes, 569

and it represents the best compromise between latency and 570

BR accuracy since it is the smallest window that supports 571



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 8, AUGUST 2015 8

TABLE 2: FPGA resource usage of the RBR. For comparison,
the resource usage of a XILINX DMA IP is also provided.

Component FFs LUTs BRAM

DMA
AXI Datamover 2129 2246 16
Interface 263 892 0
TOT 2392 3138 16

RBR
Monitor 431 119 0
Throttler 223 488 0
TOT 654 607 0
RBR area % wrt DMA 27.34% 19.34% 0%
RBR area % wrt SoC 0.119% 0.221% 0%

1% THR% variations in the high range. By comparison, the572

granularity of 256 Bytes, represented as yellow curve in the573

graph and adopted by the ARM QoS400 [13] on the target574

device, is insensitive to THR% variations finer than 4-6%575

for THR% ∈ [80%, 100%] (see Fig. 8 later on). Note that,576

if the application at hand does not require this regulation577

step resolution, our technique can be easily and quickly578

reconfigured for smaller threshold values. Table 1 reports579

the timing resolution of the RBR, for the four considered580

thresholds. The values refer to the worst-case scenario of581

THR% = 1%.582

5 EXPERIMENTAL RESULTS583

We implement our proposal on a Xilinx Zynq Ultrascale+,584

XCZU9EG HeSoC [44], an FPGA-based HeSoC integrating585

an ARM Cortex-A53 quad-core (referred to as APU), an586

ARM Cortex-R5 dual-core (referred to as RPU), and an587

FPGA. RPU cores are connected to a single DRAM controller588

port. APU cores are connected to two DRAM controller589

ports of 128-bit size. The FPGA can access the DRAM590

through four AXI4 [43] ports of 128-bit size, multiplexed to591

three DRAM controller ports of 128-bit size. The base accel-592

erator template was modeled using Xilinx IPs for the DMA2,593

soft-core, and interconnects. As we are only interested in594

measuring the worst-case interference effects, our accelera-595

tors: (i) are configured to work as traffic generators [31], i.e.,596

they perform only memory accesses without computation3;597

(ii) perform all memory accesses with a sequential stride598

(i.e., addresses are sequential between separate burst re-599

quests, and memory accesses inside a burst are sequential),600

as this pattern generates much higher bandwidth compared601

to a random access pattern [31], and thus produces the602

highest contention for the memory controller.603

We deploy three accelerators, each connected to a ded-604

icated high performance port towards the main memory605

controller. Each of these paths has dedicated performance606

monitors and QoS-400 regulators. The accelerators are ex-607

tended with our RBR, configured to work with a threshold608

of 1536 bytes and a nomcc = 96 cc (since the bus between609

the DMA and memory transfers data at a rate of 16 Bytes610

per clock cycle without contention). The resulting design611

was synthesized with a target frequency of 300 MHz. Table612

2 reports the raw area utilization of the proposed RBR in613

terms of FFs, LUTs, and BRAM. For reference we also report614

2. https://docs.amd.com/r/en-US/pg022 axi datamover
3. Note that this is without loss of generality, as well-designed accel-

erators overlap computation with memory transactions, using double-
buffered transfers to avoid stalling DMA

Listing 1: BW regulation via SW-controlled DMA
void SW_BR_DMA (void *src, void *dst, int size)
{

int NTRANS = size / threshold;
for (int i=0; i < NTRANS; i++) {

// DMA transfer and monitoring
int offset = i * threshold;
start_monitor();
DMA_prog (src+offset, dst+offset, threshold);
stop_monitor();
int copy_cycles = read_monitor();
// compute idle cycles and throttle
int idleCycles = computeIdleCycles (THR,

copy_cycles);
Wait (idleCycles);

}
}

the area utilization for the simplest DMA engine that can 615

be instantiated with Xilinx IPs (i.e., just an AXI Datamover2
616

and the necessary interfaces). As shown in Table 2, com- 617

pared to the DMA, the RBR uses the 27.34% of the FFs, the 618

19.34% of the LUTs, and the 0% of the BRAM. Overall, the 619

RBR uses less than 1% of the FPGA resources available on 620

the SoC. 621

Our experiments are aimed at comparing the proposed 622

RBR mechanism to other BR approaches, both in terms of (i) 623

speed and adaptation to dynamically varying QoS require- 624

ments (Subsection 5.1) and (ii) effective usage of the overall 625

system bandwidth (Subsection 5.2). To this aim, we compare 626

the following four approaches to BR (LCMT stands for 627

Loosely-Coupled Monitoring and Throttling, TCMT stands 628

for Tightly-Coupled and Throttling): 629

• LCMT-SW-DMA: Loosely-coupled regulation im- 630

plemented by coupling AXI Perfomance Monitor 631

(APM)4 monitoring and explicit SW-based DMA 632

throttling; 633

• LCMT-RBR: Loosely-coupled regulation imple- 634

mented by coupling APM4 monitoring and RBR 635

throttling; 636

• TCMT-RBR: Our tightly-coupled regulation solu- 637

tion, entirely based on the proposed RBR; 638

• TCMT-QoS-400: Tightly-coupled regulation imple- 639

mented by using the QoS400 regulator [13]; 640

Concerning BR in SW, this can be achieved by relying on 641

the APM for the monitoring phase and by explicitly duty 642

cycling the DMA operation in SW [21] for the throttling 643

phase. Listing 1 shows the pseudo-code to be executed 644

on the soft core of each accelerator in place of regular 645

DMA transfers. The original transfer of size bytes is split 646

in NTRANS smaller transfers, each the size of the threshold 647

parameter. Between one small transfer and the other the 648

Wait function is invoked, which stalls the DMA for idlecc 649

cycles, which is computed according to Eq. (2). 650

Concerning BR via the ARM CoreLink QoS-400 [13], on 651

the Xilinx Zynq Ultrascale+ platform multiple regulators 652

are available, enabling distinct regulations for various com- 653

ponents. The QoS-400 performs transaction rate regulation 654

based on a parameter referred to as axr (average rate), rep- 655

resenting the average number of transactions allowed per 656

4. https://docs.amd.com/v/u/en-US/pg037 axi perf mon

https://docs.amd.com/r/en-US/pg022_axi_datamover
https://docs.amd.com/v/u/en-US/pg037_axi_perf_mon


IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 8, AUGUST 2015 9

Fig. 8: Model of the QoS-400 correlating THR% values to
ax r. The equation is the linear interpolation.

clock cycle. Separate regulations are possible for write and657

read requests by writing into a memory-mapped register.658

We experimentally characterized the behavior of the QoS-659

400, and derived a model to easily correlate our THR%660

parameter to the corresponding axr setting, as shown in Fig.661

8. Being the QoS-400 regulation granularity 256 Bytes (16662

beats of 16 Bytes each), it is evident the loss of regulation663

precision as we move to high THR% values (as also shown664

in Fig. 7).665

5.1 Bandwidth regulation mechanisms speed666

This experiment is aimed at comparing how effectively the667

various BR approaches (monitoring+throttling) adapt to a668

trace of dynamically evolving QoS (i.e., THR%) settings.669

As discussed earlier, we envision a system where tasks670

start and complete execution dynamically, and a global671

SLBC (hypothetically a component of the operating system)672

is responsible for configuring the bandwidth regulators673

of the various accelerators to meet the evolving required674

THR% levels. The SLBC is modeled in our experimental675

setup using one of the available ARM Cortex R5 core on676

the platform, to avoid burdening the main CPU cores. The677

controller reads the THR% settings from the available On-678

Chip Memory (OCM). This operation requires≈ 0.34µs and679

dictates the maximum speed of the SLBC.680

Fig. 9 compares how the various approaches adapt to a681

QoS requirement trace that evolves with period T = 32µs.682

This is the nominal speed at which TCMT-RBR handles a683

worst-case 1% BR step request, using a monitoring window684

of 1536B. This magnitude matches the task admission fre-685

quency for control-oriented real-time applications [15], [16].686

The X axis shows timestamps along a temporal line, while687

the Y axis shows the percentage of the maximum bandwidth688

that the accelerator under scrutiny is requesting. The black689

curve represents the trace of THR% setting requests, while690

the other curves show how the various BR approaches adapt691

to these requests over time.692

As expected, both TCMT approaches precisely follow693

the THR% profile in every operating condition, since their694

nominal latency is less or equal than 32µs. As the cou-695

pling between monitoring and throttling phases loosens, it696

is impossible to adjust to a QoS trace evolving this fast.697

This is of course to be ascribed to the high overhead im-698

plied by the frequent DMA programming operations of the699

SW technique. Fig. 10 shows the performance penalty to700

split a single DMA transfer of 1536 KBytes in increasingly701

TABLE 3: Speed of the different bandwidth regulation tech-
niques (minimum timing resolution for THR% = 1%). The
TCMT-RBR is configured with a threshold of 1536 B, as this
provides the highest precision. The numbers are referred to
a 300 MHz implementation.

TCMT-RBR TCMT-QoS400 LCMT-RBR LCMT-SW-DMA
Cycles 9600 2364 57600 1093500
T [µs] 32 7.88 192 3645

smaller and more numerous ones, in the absence of throt- 702

tling (idlecc=0). Transferring 1536 KBytes in NTRANS=1024 703

chunks of threshold=1536 Bytes each costs ten times a 704

single transfer of 1536 KBytes, requiring around 3ms. If the 705

worst-case THR% ← 1%, the technique can process a new 706

request every (3ms/1024) ∗ 100 = 300µs. 707

Table 3 shows the minimum timing resolution, expressed 708

as microseconds and clock cycles, for the various BR tech- 709

niques, assuming the worst-case THR% = 1%. LCMT- 710

RBR and LCMT-SW-DMA are respectively 6×, and 114× 711

slower than TCMT-RBR. Our TCMT approach makes BR 712

effective for applications with timing resolutions one to two 713

orders of magnitude smaller than what is possible for LCMT 714

approaches. If coarser regulation steps are sufficient for the 715

application at hand, the RBR operates at a timing resolution 716

of 0.33µs, namely 24× faster than the TCMT-QoS400. 717

5.2 Co-scheduling 718

In a context where various processing engines coexist within 719

the system, the efficient utilization of memory bandwidth 720

becomes crucial. While tightly-coupled monitoring and 721

throttling primarily serves the purpose of effectively con- 722

trolling the QoS requirement of one or more tasks/cores in 723

the system, it is also extremely important that the technique 724

allows maximal exploitation of residual bandwidth. The 725

following sections aim to compare the residual bandwidth 726

utilization for the various BR techniques. 727

5.2.1 Effective bandwidth exploitation 728

The objective of the experiment presented in this Section is 729

that of measuring the overall memory bandwidth usage of 730

the system, while guaranteeing a certain QoS requirement 731

for critical tasks. To that end, we assume that an ARM 732

Cortex-A53 core executes the critical task on top of a Petal- 733

inux kernel5, and we express its QoS requirement in terms of 734

maximum tolerated slowdown. Following a widely adopted 735

convention in literature [12], [16], [39], we consider two QoS 736

thresholds: 10% and 20% maximum slowdown. We con- 737

sider that the three FPGA-based accelerators execute best- 738

effort tasks, and thus we regulate their bandwidth usage to 739

satisfy the QoS requirement of the critical task. To model 740

and evaluate the system dynamism in terms of workload 741

variations over time, we rely on a pre-computed trace that 742

instructs our SLBC – running on an ARM Cortex R5 core – 743

on which FPGA-based accelerators to start/stop every 32µs. 744

For each of the two QoS requirements, we provide a plot 745

where we show the use of the residual system bandwidth 746

by the FPGA-based accelerators, under the guarantee that 747

the various regulation techniques deliver the required QoS 748

5. https://docs.amd.com/v/u/en-US/dh0016-petalinux-tools-hub

https://docs.amd.com/v/u/en-US/dh0016-petalinux-tools-hub


IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 8, AUGUST 2015 10

Fig. 9: Comparison of LCMT- and TCMT- regulation in adapting to a trace of THR% settings. The trace evolves dynamically
with a period of T = 32µs.

Fig. 10: SW versus HW throttling cost when splitting a DMA
transfer of 1536kB in smaller transfers.

constraint. The results are presented as a set of bar plots for749

each of the 31 benchmarks from the Polybench suite [51],750

acting as a critical task on the ARM Cortex-A53 core.751

Fig. 11 illustrates the experimental setup used to derive752

the bar plots. The x-axis represents the overall THR% pa-753

rameter of the FPGA-based accelerators. Assuming three754

accelerator templates on the FPGA, a THR% ← 100%755

implies that the i-th accelerator template is configured with756

one-third of the total THR% (i.e., ACTi = 33.3% THR%). A757

THR% ← 100% corresponds to utilizing the entire memory758

bandwidth of the FPGA, as denoted by a vertical dotted line.759

The black plot with circle markers represents the CPU task760

execution time slowdown (to be read on the right Y axis),761

while the red area represents the cumulative bandwidth762

used by the FPGA-based accelerators (to be read on the left763

Y axis). The two black horizontal lines represent the two QoS764

Fig. 11: Experimental setup. For each benchmark we iden-
tify the highest THR% value that doesn’t exceed the QoS
requirement (10% or 20% max slowdown). The resulting
FPGA bandwidth is plotted in Fig. 12.

thresholds at 10% and 20% maximum slowdown, respec- 765

tively. The points where the slowdown curve intersect the 766

horizontal 10% and 20% QoS threshold curves are projected 767

upward to meet the edge of the red area. The bandwidth 768

value identified by these points is used in the bar plots. A 769

plot equivalent to Fig. 11 is derived for every Polybench 770

benchmark, but for a more compact and readable informa- 771

tion we only show the bar plots derived as described. The 772

SLBC behavior is based on the maximum THR% that satis- 773

fies the QoS requirement for every benchmark, BR technique 774

and number of active accelerators, based on offline profiling. 775

The bar plots for the 10% and 20% QoS requirements are 776

shown in Fig. 12a and 12b, respectively. The blue bars rep- 777



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 8, AUGUST 2015 11

(a) QoS requirement = max 10% slowdown.

(b) QoS requirement = max 20% slowdown.

Fig. 12: Exploitation of the residual bandwidth from the FPGA-based accelerators. CPU tasks are PolyBench benchmarks.

resents the TCMT-RBR, the orange bars the TCMT-QoS400778

and the grey bars the LCMT-SW-DMA. For the LCMT-SW-779

DMA we show two stacked bars, where the solid part is780

referred to the case where the SLBC trace varies using a781

slower period of 3645 µs to ensure that the QoS guarantee782

is satisfied. The hatched part of the bar shows an additional783

portion of the bandwidth that the SLBC erroneously allows784

the FPGA-based accelerators to exploit when using the con-785

trol period of 32 µs. As previously explained, since LCMT-786

SW-DMA is not fast enough to precisely follow a bandwidth787

trace that evolves using a 32 µs period, the controller is788

not capable of satisfying the QoS requirements (see Table789

3). Overall, it is evident that the proposed TCMT-RBR 790

surpasses TCMT-QoS400 in terms of residual bandwidth 791

exploration. The advantages are even more pronounced 792

compared to LCMT-SW-DMA, but this was to be expected. 793

Fig. 13 provides the average memory bandwidth uti- 794

lization of the 31 benchmark kernels. Here the measured 795

memory bandwidth is reported as a percentage of the ideal 796

residual bandwidth, obtained by applying Eq. (1), given the 797

CPU task, the number of active accelerators, and the actual 798

THR%. From this figure we can derive that the proposed 799

TCMT-RBR approach allows to use additional 28.7% and 800

48.2% memory bandwidth compared to TCMT-QoS400 and 801



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 8, AUGUST 2015 12

Fig. 13: Exploitation of the residual bandwidth from the
FPGA-based accelerators. Average.

TABLE 4: Real-world benchmarks as described by [12].

Scenario FPGA APU RPU

ACT1 ACT2 MM MT VMA I2C

VT (Max 20%) 1.20× 1.20× 1.22× 1.07× 1.70× 1.11×

T (Max 40%) 1.38× 1.38× 1.22× 1.07× 1.35× 1.04×

M (Max 60%) 1.59× 1.59× 1.22× 1.07× 1.31× 1.04×

LCMT-SW-DMA respectively, for the 10% QoS requirement.802

An increase of about 20.5% and 56.4% of memory band-803

width utilization, respect to the other two mechanisms, can804

be achieved by relaxing the constraint to a 20% of maximum805

slowdown.806

5.2.2 Unlocking more effective co-scheduling opportunities807

Previous work has explored the use of QoS control in808

modern HeSoCs to understand how this impacts the per-809

formance of co-scheduled SW and HW tasks, targeting the810

XCZU9EG SoC [12]. Here, three FPGA-based accelerators811

(Xilinx traffic generators) are considered, each attached to812

a different DRAM controller port. Two host cores from the813

APU, attached to another two DRAM controller ports, ex-814

ecute a matrix multiplication (MM) and a matrix transpose815

(MT) benchmark, respectively. Two host cores from the RPU,816

sharing a multiplexed channel to the last DRAM controller817

port, execute a vector add (VMA) and an image to column818

(I2C) benchmark. Given this co-scheduled workload, five819

high-level QoS settings are considered. In each setting, a dif-820

ferent X% maximum performance degradation (slowdown)821

is tolerated: (i) Very-Tight (VT), where X=20%; (ii) Tight (T),822

where X=40%; (iii) Moderate (M), where X=60%; (iv) Loose823

(L), where X=80%; (v) Very-Loose (VL), where X=99%. Vari-824

ous hardware QoS knobs available inside the DDR memory825

controller of the target [44] are then used to try and satisfy826

the QoS requirements (the most relevant to our discussion of827

which is the QoS-400). The key finding is that no available828

QoS knob could satisfy the M, T, and VT QoS settings.829

To conduct a direct comparison, we instantiate the exact830

same setup, with three RBR-enabled accelerators (traffic831

generators) executing in parallel with APU and RPU cores832

(executing the same benchmarks described above). Table 4833

shows the slowdown, normalized respect the execution time 834

in absence of interference (e.g. 1.2× means an increase in 835

execution time of a 20%). The slowdown measurements are 836

referred to the involved processing units for the VT, T, and 837

M QoS scenarios, i.e., the ones for which the hardware QoS 838

knobs could not satisfy the requirement [12]. The accelera- 839

tors are labeled ACT1 and ACT2 in the experiments. The 840

third accelerator, ACT3, is not included in Table 4, because 841

we aim to directly compare our results with those in [12], 842

where the authors do not consider it in their final results. 843

To conduct the experiments we exploited our fine- 844

grained RBR to precisely regulate the slowdown of the 845

ACT1 and ACT2 on the maximum tolerated by each sce- 846

nario (e.g. for the VT scenario we imposed a 1.2× for 847

both accelerator templates). This will leave more room to 848

exploit memory bandwidth to the other tasks, without com- 849

promising the performance requirements of the accelerator 850

templates. The results show that RBR can satisfy the 851

requirements for all the actors in QoS scenarios M and T 852

(the cells shaded in green), and for most actors also in QoS 853

scenario VT. This further confirms that tightly-coupled BR 854

enables system-wide scheduling opportunities that are not 855

feasible with state-of-the-art mechanisms. 856

5.3 Scalability of the Proposed Approach 857

The experimental results demonstrate the effectiveness of 858

the proposed regulation mechanism in terms of timing 859

resolution, bandwidth redistribution, and flexibility within 860

real-world scenarios. 861

Evaluating various workloads on the APU confirmed 862

the scalability of the system BR across different types of 863

applications. Additionally, testing different configurations 864

on the Zynq Ultrascale+ – involving one APU with mul- 865

tiple FPGA-based accelerators and multiple configurations 866

involving APU, RPU, and FPGA-based accelerators – high- 867

lighted the scalability across different platform setups. This 868

versatility suggests promising performance in systems with 869

additional computing elements like GPUs and DMA-based 870

I/O peripherals, although these setups were not tested in 871

the current experiments. 872

Adapting the solution to different platforms requires 873

some modifications, specifically aligning the outbound 874

monitoring and throttling signals with the bus protocols of 875

the new architecture. At this stage, there is no precise model 876

for determining the appropriate THR% value to achieve a 877

specific QoS, which represents an area for future improve- 878

ment. 879

6 CONCLUSION 880

We introduced a tightly-coupled bandwidth monitoring and 881

throttling solution for FPGA-based HeSoCs. This solution 882

is based on an original IP, the Runtime Bandwidth Regula- 883

tor, that can unobtrusively be integrated in generic FPGA- 884

based accelerator designs. The flexible programmability of 885

the main RBR configuration parameters allows to change 886

the regulation factor and its granularity at run time. This 887

approach makes BR effective for applications with timing 888

resolution one to two orders of magnitude smaller than 889

what is possible for state-of-the-art, SW-controlled solutions. 890



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 8, AUGUST 2015 13

Compared to fully-HW regulation solutions like ARM Core-891

Link QoS400, we achieve comparable regulation speed, with892

a finer throttling resolution and 28.7% better exploitation893

of the residual memory bandwidth. Moreover, changing the894

granularity at runtime allows for a trade-off between timing895

resolution and regulation step resolution, enabling the RBR896

to operate at a timing resolution of up to 0.33 µs as needed.897

It is also worth noting that HW solutions like QoS-400898

are still not widely available across FPGA vendors and899

products. When evaluated at the whole-system level for900

the co-scheduling of SW and HW tasks, the RBR enables901

effective BR in presence of much tighter QoS requirements902

compared to previous work.903

Future activities include integrating the proposed ap-904

proach with similar on-off control mechanisms for CPU905

cores (such as [16]) to achieve a more comprehensive906

system-wide BR that effectively manages both FPGA-based907

accelerators and CPU cores. Additionally, we aim to develop908

a quantitative model linking monitoring granularity with909

accuracy loss, alongside a more structured framework for910

meeting QoS requirements through THR% values. Finally,911

we plan to validate the approach across diverse platforms as912

the AMD/Xilinx Versal [1], and within application scenarios913

in the aerospace domain where multiple workloads share914

memory resources.915

ACKNOWLEDGMENTS916

This work was supported by project AI4CSM, which has917

received funding from the ECSEL Joint Undertaking (JU)918

under grant agreement No 101007326. This work was sup-919

ported by FRACTAL EU project, under ECSEL JU and920

grant agreement No 877056. The JU receives support from921

the European Union’s Horizon 2020 research and innova-922

tion programme and Germany, Austria, Belgium, Czech923

Republic, Italy, Netherlands, Lithuania, Latvia, Norway.924

The work was also supported by the European Union925

under the NextGenerationEU Programme within the Plan926

“PNRR - Missione 4 “Istruzione e Ricerca” - Componente927

C2 Investimento 1.1 “Fondo per il Programma Nazionale di928

Ricerca e Progetti di Rilevante Interesse Nazionale (PRIN)”929

by the Italian Ministry of University and Research (MUR)”.930

Project Title: “Simplifying Predictable and energy-efficient931

Acceleration from Cloud to Edge (SPACE)”, Project code:932

E53D23007800006. MUR D.D. financing decree n. 959, 30th933

June 2023. The work was also supported by the European934

Union under the NextGenerationEU Programme under the935

Italian Ministry of University and Research (MUR) National936

Innovation Ecosystem grant ECS00000041 - VITALITY -937

CUP E13C22001060006.938

REFERENCES939

[1] Xilinx, “VERSAL ACAP,” https://www.xilinx.com/products/940

silicon-devices/acap/versal.html, 2022, accessed: 05-June-2023.941

[2] NVIDIA, “NVIDIA Jetson AGX Orin Industrial module,”942

https://www.nvidia.com/en-us/autonomous-machines/943

embedded-systems/jetson-orin/, 2023, accessed: 05-June-2023.944

[3] Qualcomm, “ Heterogeneous Computing for your De-945

manding Apps ,” https://developer.qualcomm.com/blog/946

heterogeneous-computing-your-demanding-apps, 2020, accessed:947

05-June-2023.948

[4] J. Zhao, H. Cui, J. Xue, and X. Feng, “Predicting cross-core perfor- 949

mance interference on multicore processors with regression anal- 950

ysis,” IEEE Transactions on Parallel & Distributed Systems, vol. 27, 951

no. 05, pp. 1443–1456, may 2016. 952

[5] L. Subramanian, D. Lee, V. Seshadri, H. Rastogi, and O. Mutlu, 953

“Bliss: Balancing performance, fairness and complexity in memory 954

access scheduling,” IEEE Transactions on Parallel & Distributed 955

Systems, vol. 27, no. 10, pp. 3071–3087, oct 2016. 956

[6] CAST, Position Paper CAST-32A Multi-core Processors, 957

2016, Accessed: November 21st, 2021. [Online]. Avail- 958

able: https://www.faa.gov/aircraft/air cert/design approvals/ 959

air software/cast/media/cast-32A.pdf 960

[7] G. Gracioli, A. Alhammad, R. Mancuso, A. A. Fröhlich, and 961

R. Pellizzoni, “ Survey on Cache Management Mechanisms for 962

Real-Time Embedded Systems,” ACM Comput. Surv., vol. 48, no. 2, 963

nov 2015. [Online]. Available: https://doi.org/10.1145/2830555 964

[8] R. Pellizzoni, E. Betti, S. Bak, G. Yao, J. Criswell, M. Caccamo, 965

and R. Kegley, “A Predictable Execution Model for COTS-Based 966

Embedded Systems,” in 2011 17th IEEE Real-Time and Embedded 967

Technology and Applications Symposium, 2011, pp. 269–279. 968

[9] F. Farshchi, Q. Huang, and H. Yun, “BRU: Bandwidth Regulation 969

Unit for Real-Time Multicore Processors,” in 2020 IEEE Real-Time 970

and Embedded Technology and Applications Symposium (RTAS), 2020, 971

pp. 364–375. 972

[10] M. Zini, G. Cicero, D. Casini, and A. Biondi, “Profiling and con- 973

trolling I/O-related memory contention in COTS heterogeneous 974

platforms,” Software: Practice and Experience, 11 2021. 975

[11] P. Sohal, M. Bechtel, R. Mancuso, H. Yun, and O. Krieger, 976

“A Closer Look at Intel Resource Director Technology (RDT),” 977

in Proceedings of the 30th International Conference on Real-Time 978

Networks and Systems, ser. RTNS 2022. New York, NY, USA: 979

Association for Computing Machinery, 2022, p. 127–139. [Online]. 980

Available: https://doi.org/10.1145/3534879.3534882 981

[12] A. Serrano-Cases, J. M. Reina, J. Abella, E. Mezzetti, and F. J. 982

Cazorla, “Leveraging hardware QoS to control contention in the 983

Xilinx Zynq UltraScale+ MPSoC,” in 33rd Euromicro Conference 984

on Real-Time Systems (ECRTS 2021). Schloss Dagstuhl-Leibniz- 985

Zentrum für Informatik, 2021, pp. 3:1–3:26. 986

[13] ARM, “ARM CoreLink QoS-400 Network Interconnect Advanced 987

Quality of Service,” https://developer.arm.com/documentation/ 988

dsu0026/latest/, 2016, accessed: 13-April-2023. 989

[14] A. Saeed, D. Dasari, D. Ziegenbein, V. Rajasekaran, F. Rehm, 990

M. Pressler, A. Hamann, D. Mueller-Gritschneder, A. Gerstlauer, 991

and U. Schlichtmann, “Memory Utilization-Based Dynamic Band- 992

width Regulation for Temporal Isolation in Multi-Cores,” in 2022 993

IEEE 28th Real-Time and Embedded Technology and Applications Sym- 994

posium (RTAS), 2022, pp. 133–145. 995

[15] Giulio Corradi, “Tools, Architectures and Trends on 996

Industrial all Programmable Heterogeneous MPSoC,” 997

URL: http://archives.ecrts.org/fileadmin/files ecrts17/Giulio 998

Corradi Presentation.pdf, 6 2017. 999

[16] A. Zuepke, A. Bastoni, W. Chen, M. Caccamo, and R. Man- 1000

cuso, “Mempol: polling-based microsecond-scale per-core mem- 1001

ory bandwidth regulation,” Real-Time Systems, 2024. 1002

[17] Accelerat, Clare Software-Stack, 2024. [Online]. Available: https: 1003

//accelerat.eu/clare 1004

[18] Minervasys, The Minerva Tool, 2024. [Online]. Available: https: 1005

//www.minervasys.tech/downloads 1006

[19] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha, “Memory 1007

bandwidth management for efficient performance isolation in 1008

multi-core platforms,” IEEE Transactions on Computers, vol. 65, 1009

no. 2, pp. 562–576, 2016. 1010

[20] G. Schwäricke, R. Tabish, R. Pellizzoni, R. Mancuso, A. Bastoni, 1011

A. Zuepke, and M. Caccamo, “A Real-Time virtio-based Frame- 1012

work for Predictable Inter-VM Communication,” in 2021 IEEE 1013

Real-Time Systems Symposium (RTSS), 2021, pp. 27–40. 1014

[21] G. Brilli, A. Capotondi, P. Burgio, and A. Marongiu, “Understand- 1015

ing and Mitigating Memory Interference in FPGA-based HeSoCs,” 1016

in 2022 Design, Automation Test in Europe Conference Exhibition 1017

(DATE), 2022, pp. 1335–1340. 1018

[22] F. Restuccia, M. Pagani, A. Biondi, M. Marinoni, and G. But- 1019

tazzo, “Is Your Bus Arbiter Really Fair? Restoring Fairness in 1020

AXI Interconnects for FPGA SoCs,” ACM Transactions on Embedded 1021

Computing Systems (TECS), vol. 18, no. 5s, pp. 1–22, 2019. 1022

[23] F. Restuccia, A. Biondi, M. Marinoni, G. Cicero, and G. Buttazzo, 1023

“AXI HyperConnect: A Predictable, Hypervisor-level Interconnect 1024

https://www.xilinx.com/products/silicon-devices/acap/versal.html
https://www.xilinx.com/products/silicon-devices/acap/versal.html
https://www.xilinx.com/products/silicon-devices/acap/versal.html
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/
https://developer.qualcomm.com/blog/heterogeneous-computing-your-demanding-apps
https://developer.qualcomm.com/blog/heterogeneous-computing-your-demanding-apps
https://developer.qualcomm.com/blog/heterogeneous-computing-your-demanding-apps
https://www.faa.gov/aircraft/air_cert/design_approvals/air_software/cast/media/cast-32A.pdf
https://www.faa.gov/aircraft/air_cert/design_approvals/air_software/cast/media/cast-32A.pdf
https://www.faa.gov/aircraft/air_cert/design_approvals/air_software/cast/media/cast-32A.pdf
https://doi.org/10.1145/2830555
https://doi.org/10.1145/3534879.3534882
https://developer.arm.com/documentation/dsu0026/latest/
https://developer.arm.com/documentation/dsu0026/latest/
https://developer.arm.com/documentation/dsu0026/latest/
http://archives.ecrts.org/fileadmin/files_ecrts17/Giulio_Corradi_Presentation.pdf
http://archives.ecrts.org/fileadmin/files_ecrts17/Giulio_Corradi_Presentation.pdf
http://archives.ecrts.org/fileadmin/files_ecrts17/Giulio_Corradi_Presentation.pdf
https://accelerat.eu/clare
https://accelerat.eu/clare
https://accelerat.eu/clare
https://www.minervasys.tech/downloads
https://www.minervasys.tech/downloads
https://www.minervasys.tech/downloads


IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 8, AUGUST 2015 14

for Hardware Accelerators in FPGA SoC,” in 2020 57th ACM/IEEE1025

Design Automation Conference (DAC), 2020, pp. 1–6.1026

[24] Z. Jiang, K. Yang, N. Fisher, I. Gray, N. C. Audsley, and Z. Dong,1027

“AXI-ICRT RT : Towards a Real-Time AXI-Interconnect for Highly1028

Integrated SoCs,” IEEE Transactions on Computers, vol. 72, no. 3,1029

pp. 786–799, 2023.1030

[25] ARM, “CoreLink QVN-400 Network Interconnect Advanced1031

Quality of Service using Virtual Networks,” https://developer.1032

arm.com/documentation/dsu0027/latest/, 2016, accessed: 13-1033

April-2023.1034

[26] A. Pellegrini, “Arm Neoverse N2: Arm’s 2 nd generation high1035

performance infrastructure CPUs and system IPs,” in 2021 IEEE1036

Hot Chips 33 Symposium (HCS). IEEE, 2021, pp. 1–27.1037

[27] G. Brilli, G. Valente, A. Capotondi, P. Burgio, T. Di Masciov,1038

P. Valente, and A. Marongiu, “Fine-grained qos control via tightly-1039

coupled bandwidth monitoring and regulation for fpga-based1040

heterogeneous socs,” in 2023 60th ACM/IEEE Design Automation1041

Conference (DAC), 2023, pp. 1–6.1042

[28] T. Lugo, S. Lozano, J. Fernández, and J. Carretero, “A survey of1043

techniques for reducing interference in real-time applications on1044

multicore platforms,” IEEE Access, vol. 10, pp. 21 853–21 882, 2022.1045

[29] N. Capodieci, R. Cavicchioli, I. S. Olmedo, M. Solieri, and1046

M. Bertogna, “Contending memory in heterogeneous SoCs: Evo-1047

lution in NVIDIA Tegra embedded platforms,” in 2020 IEEE1048

26th International Conference on Embedded and Real-Time Computing1049

Systems and Applications (RTCSA), 2020, pp. 1–10.1050

[30] S. Yamagiwa and K. Wada, “Performance study of interference1051

on GPU and CPU resources with multiple applications,” in 20091052

IEEE International Symposium on Parallel & Distributed Processing,1053

2009, pp. 1–8.1054

[31] K. Manev, A. Vaishnav, and D. Koch, “Unexpected Diversity:1055

Quantitative Memory Analysis for Zynq UltraScale+ Systems,”1056

in 2019 International Conference on Field-Programmable Technology1057

(ICFPT), 2019, pp. 179–187.1058

[32] G. Valente, T. D. Mascio, L. Pomante, and G. D’Andrea, “Dynamic1059

partial reconfiguration profitability for real-time systems,” IEEE1060

Embedded Systems Letters, vol. 13, no. 3, pp. 102–105, 2021.1061

[33] G. Valente, V. Muttillo, F. Federici, L. Pomante, and T. Di Mascio,1062

“Analysis of reconfiguration delay in heterogeneous systems-on-1063

chip via traffic injection,” IEEE Embedded Systems Letters, vol. 16,1064

no. 2, pp. 162–165, 2024.1065

[34] A. Alhammad and R. Pellizzoni, “Time-predictable execution of1066

multithreaded applications on multicore systems,” in 2014 Design,1067

Automation & Test in Europe Conference & Exhibition (DATE). IEEE,1068

2014, pp. 1–6.1069

[35] J. Martinez, I. Sañudo, and M. Bertogna, “Analytical Characteriza-1070

tion of End-to-End Communication Delays With Logical Execution1071

Time,” IEEE Transactions on Computer-Aided Design of Integrated1072

Circuits and Systems, vol. 37, no. 11, pp. 2244–2254, 2018.1073

[36] B. Forsberg, L. Benini, and A. Marongiu, “HePREM: A Predictable1074

Execution Model for GPU-based Heterogeneous SoCs,” IEEE1075

Transactions on Computers, vol. 70, no. 1, pp. 17–29, 2021.1076

[37] G. Yao, R. Pellizzoni, S. Bak, H. Yun, and M. Caccamo, “Global1077

Real-Time Memory-Centric Scheduling for Multicore Systems,”1078

IEEE Transactions on Computers, vol. 65, no. 9, pp. 2739–2751, 2016.1079

[38] J. Nowotsch, M. Paulitsch, D. Bühler, H. Theiling, S. Wegener,1080

and M. Schmidt, “Multi-core interference-sensitive WCET analysis1081

leveraging runtime resource capacity enforcement,” in 2014 26th1082

Euromicro Conference on Real-Time Systems. IEEE, 2014, pp. 109–1083

118.1084

[39] P. Sohal, R. Tabish, U. Drepper, and R. Mancuso, “Profile-driven1085

memory bandwidth management for accelerators and CPUs in1086

QoS-enabled platforms,” Real-Time Systems, pp. 1–40, 04 2022.1087

[40] H. Aghilinasab, W. Ali, H. Yun, and R. Pellizzoni, “Dynamic mem-1088

ory bandwidth allocation for real-time gpu-based soc platforms,”1089

IEEE Transactions on Computer-Aided Design of Integrated Circuits1090

and Systems, vol. 39, no. 11, pp. 3348–3360, 2020.1091

[41] R. Cavicchioli, N. Capodieci, M. Solieri, M. Bertogna, P. Valente,1092

and A. Marongiu, “Evaluating Controlled Memory Request Injec-1093

tion to Counter PREM Memory Underutilization,” in Workshop on1094

Job Scheduling Strategies for Parallel Processing. Springer, 2020, pp.1095

85–105.1096

[42] P. Modica, A. Biondi, G. Buttazzo, and A. Patel, “Supporting1097

temporal and spatial isolation in a hypervisor for ARM multi-1098

core platforms,” in 2018 IEEE International Conference on Industrial1099

Technology (ICIT), 2018, pp. 1651–1657.1100

[43] ARM, AMBA 4 AXI and ACE Protocol Specification, 2013, Accessed: 1101

May 5,2022. [Online]. Available: https://developer.arm.com/ 1102

documentation/ihi0022/e 1103

[44] Xilinx, Zynq UltraScale+ Technical Reference 1104

Manual, 2022. [Online]. Available: https: 1105

//docs.xilinx.com/r/en-US/ug1085-zynq-ultrascale-trm/ 1106

Zynq-UltraScale-Device-Technical-Reference-Manual 1107

[45] Intel, Agilex 7 Technical Reference Manuel, 2024. [Online]. 1108

Available: https://www.intel.com/content/www/us/en/docs/ 1109

programmable/683458/current/overview-of-the-fpgas-and-socs. 1110

html 1111

[46] H. Omidian, N. Ivanov, and G. G. Lemieux, “An Accelerated 1112

OpenVX Overlay for Pure Software Programmers,” in 2018 In- 1113

ternational Conference on Field-Programmable Technology (FPT), 2018, 1114

pp. 290–293. 1115

[47] P. Mantovani, D. Giri, G. Di Guglielmo, L. Piccolboni, J. Zuck- 1116

erman, E. G. Cota, M. Petracca, C. Pilato, and L. P. Carloni, 1117

“Agile SoC Development with Open ESP : Invited Paper,” in 1118

2020 IEEE/ACM International Conference On Computer Aided Design 1119

(ICCAD), 2020, pp. 1–9. 1120

[48] X. Ling, T. Notsu, and J. Anderson, “An Open-Source Framework 1121

for the Generation of RISC-V Processor + CGRA Accelerator Sys- 1122

tems,” in 2021 24th Euromicro Conference on Digital System Design 1123

(DSD), 2021, pp. 35–42. 1124

[49] G. Bellocchi, A. Capotondi, F. Conti, and A. Marongiu, “A RISC-V- 1125

based FPGA Overlay to Simplify Embedded Accelerator Deploy- 1126

ment,” in 2021 24th Euromicro Conference on Digital System Design 1127

(DSD), 2021, pp. 9–17. 1128

[50] G. Valente, T. Fanni, C. Sau, T. D. Mascio, L. Pomante, 1129

and F. Palumbo, “A Composable Monitoring System for 1130

Heterogeneous Embedded Platforms,” ACM Trans. Embed. 1131

Comput. Syst., vol. 20, no. 5, jul 2021. [Online]. Available: 1132

https://doi.org/10.1145/3461647 1133

[51] U. of California Los Angeles, “PolyBench/C the Polyhedral 1134

Benchmark suite,” http://web.cs.ucla.edu/∼pouchet/software/ 1135

polybench/, 2012, accessed: 03-April-2023. 1136

Giacomo Valente received the MS. Degree in 1137

Electronic Engineering in 2014 and the Ph.D. 1138

degree in Information and Communication Tech- 1139

nology in 2018 from University of L’Aquila. His 1140

primary research activities are in electronic de- 1141

sign automation, reconfigurable computer archi- 1142

tectures, and real-time systems. Since 2022, he 1143

has been an Assistant Professor in Computer 1144

Architecture at the Department of Information 1145

Engineering, Computer Science, and Mathemat- 1146

ics of the University of L’Aquila. He is the author 1147

or co-author of more than 30 research articles in peer-reviewed journals 1148

and international conference proceedings. He has been also a reviewer 1149

and member of several TPCs related to his research topics. 1150

Gianluca Brilli is a postdoctoral researcher 1151

in computer engineering at the University of 1152

Modena and Reggio Emilia, within the High- 1153

Performance Real-Time Laboratory (HiPeRT- 1154

Lab) located in Modena, Italy. His expertise lies 1155

in the field of software and hardware acceler- 1156

ation using reconfigurable embedded systems. 1157

His main research interests are main memory 1158

QoS regulation and memory interference mitiga- 1159

tion on FPGA-based heterogeneous systems. 1160

1161

https://developer.arm.com/documentation/dsu0027/latest/
https://developer.arm.com/documentation/dsu0027/latest/
https://developer.arm.com/documentation/dsu0027/latest/
https://developer.arm.com/documentation/ihi0022/e
https://developer.arm.com/documentation/ihi0022/e
https://developer.arm.com/documentation/ihi0022/e
https://docs.xilinx.com/r/en-US/ug1085-zynq-ultrascale-trm/Zynq-UltraScale-Device-Technical-Reference-Manual
https://docs.xilinx.com/r/en-US/ug1085-zynq-ultrascale-trm/Zynq-UltraScale-Device-Technical-Reference-Manual
https://docs.xilinx.com/r/en-US/ug1085-zynq-ultrascale-trm/Zynq-UltraScale-Device-Technical-Reference-Manual
https://docs.xilinx.com/r/en-US/ug1085-zynq-ultrascale-trm/Zynq-UltraScale-Device-Technical-Reference-Manual
https://docs.xilinx.com/r/en-US/ug1085-zynq-ultrascale-trm/Zynq-UltraScale-Device-Technical-Reference-Manual
https://www.intel.com/content/www/us/en/docs/programmable/683458/current/overview-of-the-fpgas-and-socs.html
https://www.intel.com/content/www/us/en/docs/programmable/683458/current/overview-of-the-fpgas-and-socs.html
https://www.intel.com/content/www/us/en/docs/programmable/683458/current/overview-of-the-fpgas-and-socs.html
https://www.intel.com/content/www/us/en/docs/programmable/683458/current/overview-of-the-fpgas-and-socs.html
https://www.intel.com/content/www/us/en/docs/programmable/683458/current/overview-of-the-fpgas-and-socs.html
https://doi.org/10.1145/3461647
http://web.cs.ucla.edu/~pouchet/software/polybench/
http://web.cs.ucla.edu/~pouchet/software/polybench/
http://web.cs.ucla.edu/~pouchet/software/polybench/


IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 14, NO. 8, AUGUST 2015 15

Tania Di Mascio is an Associate Professor in the1162

Department of Information Engineering, Com-1163

puter Science, and Mathematics (DISIM) at the1164

University of L’Aquila. She teaches courses on1165

Methods and Methodologies for ICT and Ad-1166

vanced Database Systems. At the University of1167

L’Aquila, she is responsible of the Interaction and1168

Computational Systems Laboratory and over-1169

sees the L’Aquila node of CINI Assisting Tech-1170

nology. In addition to her academic roles, she1171

serves as an Innovation Manager for MIMIT and1172

is a co-founder and CXO of Project Innovation srl. Prof. Di Mascio has1173

participated in numerous EU projects, assuming significant scientific1174

management roles. Currently, she coordinates the Assistive Technol-1175

ogy and Embedded System research group (ATES@AQ). Her primary1176

research interests include human-computer interaction, assistive tech-1177

nologies and embedded systems, and technology-enhanced learning.1178

She has authored or co-authored over 150 research articles in peer-1179

reviewed journals and conference proceedings. Prof. Di Mascio is a1180

member of several steering committees for international and national1181

conferences. She acts as a referee for numerous international journals1182

and frequently serves on organizing and program committees for confer-1183

ences and workshops. Additionally, she is an active member of SIGCHI,1184

the Center of Excellence of DEWS, and the HiPEAC (High Performance,1185

Edge, and Cloud Computing) European Organization.1186

Alessandro Capotondi (Member, IEEE) is As-1187

sistant Professor at the University of Modena1188

and Reggio Emilia. He received a PhD in1189

Electronics, Telecommunications and Informa-1190

tion Technology at the University of Bologna1191

in 2016. He has been a research assistant1192

and postdoctoral researcher at the University of1193

Bologna and the University of Modena and Reg-1194

gio Emilia. His research interests focus mainly1195

on embedded systems and heterogeneous com-1196

puting devices, architectures for programmable1197

and reconfigurable logic (FPGA), and HW-SW co-design of embedded1198

systems. In these areas, he has published more than 30 papers in1199

international peer-reviewed conferences and journals, with more than1200

900 citations and an h-index of 15 [Google Scholar].1201

Paolo Burgio got a Ph.D in Electronics En-1202

gineering jointly between the University of1203

Bologna and the University of Southern-Brittany,1204

in 2013. His research topics are next-generation1205

predictable systems based on heterogeneous1206

many-cores and GP-GPUs, with an eye on com-1207

pilers, and parallel programming models. Since1208

2014 he joined HiPeRT Lab at Univ. of Modena,1209

where he currently coordinates the activities on1210

autonomous vehicles and drones, and smart1211

cities. He is co-founder of the HiPeRT srl startup.1212

Paolo Valente (male) is Assistant Professor at1213

the Department of Computer Science of the1214

University of Modena and Reggio Emilia, Italy.1215

He previously was a Research Collaborator at1216

the University of Pisa. His research activity is1217

mainly focused on the design and analysis of1218

real-time and proportional-share scheduling al-1219

gorithms for CPU, disk and network. Notable1220

contributions include the QFQ packet scheduler,1221

providing quasi-optimal guarantees at O(1) cost,1222

and the BFQ proportional-share I/O scheduler.1223

Both are now part of the Linux kernel. In addition, he has contributed1224

new mathematical results, and new paradigms, for guaranteeing both1225

real-time constraints and a high utilization in multiprocessor systems.1226

He was and is involved in national and European research projects.1227

Andrea Marongiu received the PhD degree 1228

in Computer and Electronic Engineering from 1229

the University of Bologna, Italy, in 2010. He 1230

has been a postdoctoral reserch fellow at ETH 1231

Zurich, Switzerland. He currently is an asso- 1232

ciate professor at the University of Modena and 1233

Reggio Emilia. His research interests focus on 1234

programming models and architectures in the 1235

domain of heterogeneous multi- and many-core 1236

systems-onchip. In this field, he has published 1237

more than 120 papers in peer-reviewed confer- 1238

ences and journals. 1239


	Introduction
	Related Work
	Background
	Runtime Bandwidth Regulator
	Runtime Bandwidth Regulator Architecture
	Runtime Bandwidth Regulator SoC Integration
	Choosing the threshold

	Experimental Results
	Bandwidth regulation mechanisms speed
	Co-scheduling
	Effective bandwidth exploitation
	Unlocking more effective co-scheduling opportunities

	Scalability of the Proposed Approach

	Conclusion
	References
	Biographies
	Giacomo Valente
	Gianluca Brilli
	Tania Di Mascio
	Alessandro Capotondi
	Paolo Burgio
	Paolo Valente
	Andrea Marongiu


