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Abstract
Heterogeneous System on Chip (HeSoC) based on reconfigurable
accelerators, such as Field-Programmable Gate Arrays (FPGAs),
offer a promising solution to meet the performance and energy
efficiency demands of advanced perception and localization tasks
in autonomous vehicles. This study investigates the hardware ac-
celeration of a computer vision pipeline for lane detection on an
FPGA, specifically targeting the AMD Kria KV260 device. We eval-
uate various integration architectures, memory organizations, and
offloading strategies for integrating the multiple components of
the pipeline. Experimental results demonstrate that the proposed
solutions achieve up to 22× speedup compared to a software-only
implementation, highlighting significant improvements in resource
usage and processing efficiency.

CCS Concepts
•Hardware→Hardware accelerators; • Computer systems
organization → System on a chip; Robotic autonomy; • Com-
puting methodologies→ Computer vision.
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1 Introduction and motivation
Lane detection is the process of identifying lane markings on a
road using image processing techniques. It plays a crucial role in
the field of autonomous driving, ensuring that autonomous cars
follow the correct path. Traditional lane detection methods rely on
techniques such as edge detection, color filtering, and the Hough
Transform to recognize lanes. These methods analyze contrasts and
geometric patterns to distinguish lane markings from the rest of the
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Figure 1: Example of a lane detection system for F1Tenth
autonomous cars.

road. More advanced approaches use curve fitting and perspective
transformation to improve accuracy in detecting lane structures
[8]. Luo et al. use a neural network and deep learning-based ap-
proach, based on a transformer architecture, instead of relying on
traditional computer vision techniques [9]. Hybrid approaches try
to combine neural networks with computer vision techniques [12].
Lane detection operates in real-time, processing continuous frames
from a camera mounted on the vehicle. To achieve the necessary
speed and efficiency, these algorithms are typically implemented
on small and constrained embedded systems, utilizing hardware
accelerators such as GPUs, FPGAs, or dedicated processors. This
ensures fast computation while meeting the constraints of auto-
motive applications. A relevant use-case of lane detection is the
F1Tenth competition1, a platform for autonomous racing with 1:10
scale cars. Due to their small size, these vehicles are equipped
with compact and low-power computing platforms, which impose
constraints on processing capabilities. To achieve real-time perfor-
mance, efficient implementation of algorithms is essential. FPGAs
are widely adopted to implement lane detectors due to their ability
to process data in parallel while maintaining low power consump-
tion. However, programming FPGAs using traditional hardware
description languages (HDLs) can be complex and time-consuming,
and requires specialized expertise. To streamline development, on
one hand, High-Level Synthesis (HLS) tools enable developers to
1https://roboracer.ai/
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Figure 2: FPGA-basedHeSoCwith the five accelerated kernels
using AMD Vitis Vision.

write FPGA-accelerated code using higher-level languages such as
C/C++ [7], while on the other hand, overlay architectures try to
simplify the deployment of accelerator-rich architectures [5, 6]. Fur-
thermore, many FPGA vendors and academia, provide optimized
libraries or IPs, to simplify implementation [1, 3, 4]. For example,
Vitis Vision offers a collection of pre-built and highly optimized
image processing functions, implemented in HLS and tailored for
FPGA acceleration [3]. Several works use Vitis Vision to accelerate
computer vision pipelines on AMD FPGAs [10, 11]. Nakagawa et
al. use Vitis Vision library to accelerate a computer vision system
for height measurements on mono camera-equipped drones [10].

The contribution of our paper is the acceleration of part of the
lane detection application on FPGA. This system serves as a key
building block for autonomous driving on the F1Tenth platform,
allowing us to test and evaluate various architectural optimizations.
All the code and design associated with this project are released in
an open source repository2.

2 Design Exploration
Our reference system is based on a heterogeneous FPGA architec-
ture, where a multicore CPU (ARM Cortex A53) is coupled with
programmable logic, forming a unified computational platform.
The main memory is shared, enabling data exchange between CPU
and FPGA. The starting point of our work is the software imple-
mentation of the entire lane detection pipeline on the ARM Cortex
A533, which also serves as the reference point for our performance
evaluation. With our experimental campaign we identified kernels
to be accelerated on the FPGA. We deployed hardware accelerators
using the AMD Vitis Vision library [3], a collection of libraries
composed of some common computer vision functions. The Vitis
Vision libraries include different utilization flows that are organized
in three different levels, named L1, L2 and L3. We used the L1 flow,
that contains low-level HLS implementations, while the other two
levels (L2 and L3), also include OpenCL code for interactions with
the FPGA and more complex applications, composed of pipelined
kernels. This approach allowed us to rapidly develop and integrate

2https://github.com/Magnani95/lane-detection-xilinx
3https://github.com/MichiMaestre/Lane-Detection-for-Autonomous-Cars

custom accelerators while benefiting from state-of-the-art library
components.

As reported in Figure 2, all hardware accelerators are memory-
mapped and managed by the host CPU, which orchestrates the
overall execution flow. Each accelerator is equipped with master
AXI interfaces for high-bandwidth data transfers, with all AXI
links multiplexed onto a shared main interconnect. Moreover, we
evaluate the impact of several architectural optimizations to further
enhance performance and resource utilization. These optimizations
include: i) the introduction of local memory buffers to minimize
data transfer latency; ii) pipelined execution to increase throughput;
iii) local control units to reduce communication overhead between
the CPU and accelerators.

Global vs local memory. With this architectural optimization
we aim to quantify the benefits achieved using private local memo-
ries for each stage of the computer vision pipeline, in contrast to
the baseline architecture where all data exchanges relied on shared
DRAM. In the proposed approach, the input data is initially read
from the DRAM before being processed by the pipeline. During
the intermediate stages, data exchanges between subsequent pro-
cessing steps are handled entirely through local memory, which is
dedicated to each computational unit. This strategy reduces the re-
quests on the shared DRAM and minimizes latency due to memory
access contention. Once the final stage of the pipeline is completed,
the resulting output data is written back to DRAM for further use.
This approach aims to exploit the lower access latency of private
memories, improving the overall performance.

Remote vs local control. In this configuration, a local processor
core — implemented as a softcore deployed on the FPGA fabric — is
physically closer to the accelerator compared to the remote control
scenario where the host processor manages the accelerators. The
communication path between the softcore and the accelerator’s
register file is shorter, requiring fewer hardware interconnects to
be traversed. This architectural optimization reduces the latency
for reading and writing the accelerator’s control registers, enabling
more lightweight and frequent interactions. Moreover, parameter
control is performed via an AXI-Stream interface, unlike the Remote
control configuration where the AXI-Lite protocol was employed.
This more efficient communication mechanism contributes to faster
reconfiguration of the accelerator and overall improved system
performance.

Sequential vs pipelined model. On the software side, we ana-
lyzed two different execution models to orchestrate the accelerator
kernels. The first approach is the sequential model, where the ker-
nels are executed on after the other in a strictly sequential manner.
The second approach, reported in listing 1, is the pipelined model,
which exploits parallelism to improve performance. In this model,
all kernels are launched in parallel, using a double buffering mem-
ory scheme. The execution is organized in stages: during each stage,
all accelerators process their respective data in parallel, and the next
stage can only be launched once every accelerator in the current
stage has completed its task. This model aims to overlap computa-
tion and data transfer, potentially reducing overall execution time
by maximizing resource utilization.

https://github.com/Magnani95/lane-detection-xilinx
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Listing 1: Pipelined execution model
1 /* 1. Define arrays of kernel functions to

start and wait */
2 /* 2. Start all kernels */
3 for (int i = 0; i < 5; i++) {
4 start_kernels[i]();
5 }
6 /* 3. Wait for kernels completion */
7 for (int i = 0; i < 5; i++) {
8 wait_kernels[i]();
9 }

3 Experimental Results
The experimental platform used to validate our approach is the
AMD Kria KV260 [2], a heterogeneous system-on-Chip (HeSoC)
designed for edge computing and AI applications. This platform fea-
tures a quad-core ARM Cortex-A53 processor for general-purpose
applications and a dual-core ARM Cortex-R5 processor optimized
for real-time tasks. Our focus is on implementing and optimizing
a lane detection system, leveraging the FPGA resources provided
by the KV260 platform. To support the lane detection pipeline,
we designed a custom architecture based on hardware accelera-
tors, implemented via HLS. The accelerators are tailored for image
pre-processing, feature extraction, and the geometrical analysis
required for lane detection. We first conducted a software profil-
ing of the kernels in the lane detection pipeline, reported in Table
1. This step allowed us to identify the computational bottlenecks
and assess the performance-critical stages of the application. We
then evaluated the execution times of the various kernels and we
identified gaussian filter and Hough transform as the most compute-
intensive kernels of the pipeline. However, due to the limited FPGA
resources available on the Kria KV260, we were unable to accelerate
the Hough transform, as its implementation exceeded the available
area. Instead, we focused on accelerating the gaussian filter along
with the subsequent four kernels in the pipeline (reported in bold
in the table), while the rest of the kernels are executed in software.

3.1 Methodology
In our experiments, reported in Table 2, as described in the previous
section, we integrated HLS kernels from the Vitis Vision on the
FPGA. In the first group of experiments, referred as Global memory
& remote control, all the input/output memory ports of the kernels
are conneted to the global DRAM, while the host CPU (ARM Cortex
A53) directly controls the kernel execution. As we can note the
gaussian filter, that was the most compute-intensive stage, got
the better speedup ≈ 92× compared to the software execution
using OpenCV. However due to the last four kernels that are still
implemented in software, the speedup of the lane detection is ≈ 2×.
In the following subsections we analyze the impact of different
system architectures on the end-to-end execution time of the lane
detection application.

Exp 1 — Global vs local memory. The private memories are
implemented in the Vivado block design using Block Memory Gen-
erator component and BRAM resources. Block RAMs are memories
located on the FPGA that allow low latency and more predictable
accesses. Our experiments are referred as Local memory & remote
control in Table 2. As we can note from the table, due to different

Figure 3: Execution time and speedup of Sequential vs
pipelined model.

access patterns, not all the kernels benefit from the use of local
memories. For example considering Filter2D the speedup increases
from ≈ 7.5× up to ≈ 7.7×, while the Mask kernel increased its
speedup from ≈ 2.6× up to ≈ 5.0×. Not all kernels benefit from
local memories, since some are compute-bound, where their
execution time is primarily determined by computation. Ac-
celerators that are memory-bound gain the most from this
optimization.

Exp 2 — Remote vs local control. The last column of Table 2
reports the performance achieved using a local control, referred
as Local memory & local control. As we can note from the table,
in this case we don’t have a significant improvement in terms
of achieved speedup. The kernels that exhibit more benefits
from a local control, are those kernels that require a high
number of parameters before their execution (i.e. a high number
of CPU/accelerators interactions). In our case the gaussian filter and
Mask are the kernels that are characterized by a greater speedup
compared to the others. For example considering the gaussian filter,
the speedup from ≈ 92× reaches ≈ 96×, while Mask from ≈ 5×
to ≈ 5.6×. Considering the five accelerated kernels, we have an
average speedup of 17.5× compared to the software execution.
While if we consider the full lane detection pipeline (with more
four kernels implemented using software OpenCV) we have a 2.1×
of speedup, that translates into 217 frames processed per second.

Exp 3 — Sequential vs pipelined model. To evaluate the ben-
efits of the pipelined execution model, we compared its perfor-
mance against the sequential execution using the best-performing
configuration from previous experiments (i.e. the last column of
Table 2). As reported in Figure 3, the sequential model achieves
a speedup of 16.6×, reflecting the improvement obtained by of-
floading the computational workload to the hardware accelerators
while processing one kernel at a time. Conversely, the pipelined
model reaches a 22.3× speedup, demonstrating the advantage of ex-
ecuting the five accelerators simultaneously. This result highlights
how the pipelined approach maximizes resource utilization, further
improving the overall system performance.

Finally, we report the resource utilization of the five accelerated
kernels as percentage with respect to the available resources of the
Kria KV260. The resource utilization takes into account i) the global
memory and remote control architectural design; ii) the optimized
version, named local memory and local control and iii) the whole
block design implemented on top of the Kria SoC. As we can see
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Table 1: Software execution time.

kernel exec time [ms]
Gauss 4.837
cvt-color bgr2gray 0.144
Threshold 0.027
Filter2d 0.294
Mask 0.141
Hough 4.123
Lines separation 0.079
Regression 0.105
Predict turn 0.027

TOT 9.813

Table 2: Execution time and speedup achieved using Vitis Vision kernels.

Global memory & Local memory & Local memory &
remote control remote control local control

kernel time speedup time speedup time speedup
Gauss 0.053 91.94× 0.053 91.94× 0.051 95.55×
cvt-color bgr2gray 0.177 0.814× 0.177 0.814× 0.175 0.823×
Threshold 0.027 1.000× 0.027 1.000× 0.025 1.080×
Filter2d 0.039 7.538× 0.038 7.737× 0.037 7.946×
Mask 0.054 2.611× 0.028 5.036× 0.025 5.640×
TOT (accelerated kernels) 0.350 15.65× 0.323 16.96× 0.313 17.50×
TOT (entire application) 4.684 2.087× 4.657 2.099× 4.647 2.104×

Figure 4: Resource utilization of Global memory & remote
control, Local memory & local control versions.

from Figure 4, the final implementation uses ≈ 70% and ≈ 90% of
LUTs and BRAMs respectively, while the utilization of the other
resources is always less than 30%.

4 Conclusion
The results of this study highlight the effectiveness of FPGA-based
hardware acceleration for lane detection tasks in autonomous ve-
hicle applications. The proposed approach, implemented on the
AMD Kria KV260, demonstrates that reconfigurable accelerators
integrated within a Heterogeneous System on Chip (HeSoC) ar-
chitecture can significantly improve performance. The experimen-
tal evaluation shows that the optimized integration architectures,
memory organizations, and offloading strategies enable up to 22×
reduction in latency compared to software-only implementations.
These findings confirm the potential of FPGA technology to en-
hance computer vision pipelines, making it a compelling solution
for high-performance and resource-efficient autonomous percep-
tion systems. As future work, we plan to extend the FPGA-based
acceleration to the entire lane detection pipeline, including feature
extraction and lane model fitting, to further improve performance
and efficiency.
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