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Abstract
FPGA-based heterogeneous systems are a popular choice for accel-
erating Deep Neural Networks (DNNs), but efficiently integrating
and orchestrating HW and SW tasks remains challenging. FPGA
overlay architectures have been proposed to simplify accelerator
management, yet state-of-the-art solutions struggle with perfor-
mance bottlenecks caused by frequent CPU-FPGA interactions. We
introduce a novel overlay-based methodology enabling the Proxy
Computing paradigm, leveraging a local orchestrator and shared
memory to (i) reduce accelerator control overhead and (ii) minimize
unnecessary data movements. As a case study, we integrate the
AMD/Xilinx Deep Learning Processing Unit (DPU) with additional
accelerators for unsupported layers. Experiments show that our
approach significantly reduces memory transfers, achieving up to
4× speed up in the proposed case study.

CCS Concepts
• Hardware → Reconfigurable logic and FPGAs; • Computer
systems organization→ Embedded hardware; • Computing
methodologies→ Artificial intelligence.
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1 Introduction
Deep Neural Networks (DNNs) are fundamental in Cyber-Physical
Systems (CPS) design, excelling in tasks like perception for au-
tonomous navigation [9]. These systems require low latency, high
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CF ’25, Cagliari, Italy
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1528-0/2025/05
https://doi.org/10.1145/3719276.3725192

throughput, and energy efficiency for real-time control, sensor
processing, and decision-making. FPGAs are well-suited for DNN
acceleration due to their customizable hardware, optimized per-
formance, and adaptability to evolving applications [14]. However,
DNNs are typically part of larger applications involving multiple
HW and SW tasks [11]. The adoption of FPGAs has been facilitated
by heterogeneous systems integrating FPGA logic with multi-core
CPUs and memory hierarchies, supporting standard OS and appli-
cations [14]. For acceleration logic design, established solutions rely
on high-level flows such as High Level Synthesis (HLS), OpenCL,
or pre-configured engines from major System on Chip (SoC) ven-
dors. The AMD/Xilinx Deep Learning Processing Unit (DPU), for
instance, is a commercial DNN accelerator deployable on FPGAs in
a plug-and-play manner [8, 12, 13, 15]. Despite these advancements,
integrating DNN engines with other accelerators and processing
cores remains a challenge. FPGA overlays simplify accelerator-rich
system design [1–3], but performance bottlenecks persist due to
orchestration overhead and memory transfer inefficiencies. Prior
works explored integration solutions, such as coupling the NVDLA
enginewith RISC-V cores [5, 6], or leveraging small RISC-V cores for
co-processor control [1–3, 10]. Bernardi et al. [2] demonstrated that
using a soft-core to manage a localization engine reduces memory
transactions and end-to-end latency, but their results also highlight
that the soft-core is not capable of sustaining the compute through-
put required by an accelerator. For this reason, unlike our approach,
we strictly employ the soft-core for orchestration.

We propose an overlay-based methodology enabling the Proxy
Computing paradigm, which provides local control of accelera-
tors within an FPGA cluster, including DMA engines managing
data movement from DRAM to shared memory. This reduces CPU-
dependent memory copies, improving computation locality. As a
case study, we integrate the AMD/Xilinx DPUwith additional accel-
erators for unsupported layers. The proposed approach encourages
accelerating all compute-intensive components using established
methodologies such as HLS while centralizing their control within
the overlay. Our experiments demonstrate that Proxy Computing
achieves up to 4× performance improvement in multi-accelerator
scenarios compared to vendor-provided workflows.

2 The Proxy Computing Approach
FPGA-based heterogeneous systems combine a multi-core CPU
with an FPGA fabric, both sharing access to DRAM for data ex-
change. This architecture leverages the general-purpose processing
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Figure 1: FPGA-based HeSoC, integrating DPU and Unsup-
ported Layers (UL).

of the CPU and the hardware acceleration capabilities of the FPGA.
A common approach to integrate high-performance accelerators
involves deploying multiple accelerator clusters on the FPGA, inter-
connected via DRAM. Each cluster typically includes an accelerator
and a DMA engine, with the CPU handling configuration, compu-
tation setup, execution, and task monitoring. However, this remote
control mechanism introduces significant overhead due to CPU-
based register accesses, adding latency that becomes a major bot-
tleneck in systems requiring frequent CPU-accelerator interactions.
Furthermore, accelerators lack a shared memory space, relying on
DRAM for data exchange. This necessitates frequent and costly
memory transfers, significantly impacting performance. To address
these inefficiencies, prior works have explored integrating soft-
processors for accelerator control [1, 2, 10]. Some approaches even
offload computations to soft-cores [2], reducing data movement but
failing to improve performance due to their limited computational
power compared to the host CPU.

To overcome these limitations, our methodology introduces an
accelerator cluster with a shared local memory and a programmable
Proxy-Controller, tightly coupled with accelerators, DMAs, and
other IPs. This enables the Proxy Computing paradigm, maintaining
both data and control locally within the cluster. The Proxy-Controller
orchestrates accelerator operations, minimizing costly CPU inter-
actions and optimizing data flow within shared memory, reducing
unnecessary transfers.

2.1 Integrating the AMD/Xilinx DPU
As a representative embodiment of the Proxy Computing design
paradigm, we describe how to integrate the DPU engine in our
overlay cluster. To enable the local orchestration of the overlay,
we start analyzing the main DPU registers, that are: 1) DPU ma-
chine code: memory address of the machine code that contains the
instructions to be executed on the DPU engine; 2) Input/Output
buffers: two different registers, one to keep the memory address
of the source buffer and one for the destination address; 3) Neural
network parameters: memory address of the quantized parameters
of the target neural network, including weights, biases and acti-
vations; 4) DPU workspace: starting address of a memory region

that is used by the DPU engine as a temporary workspace, to store
intermediate results.

1 // notify proxy controller to start
2 *_pcore_end = SIG_NOT_ENDED;
3 *_pcore_start = SIG_START;
4 // busy wait for DPU execution completion
5 while (* _pcore_end == SIG_NOT_ENDED)
6 ;

Listing 1: Host code to trigger Proxy-Controller.

In addition to the DPU engine, several other accelerators have been
integrated in our cluster, with the aim of accelerating the operations
that are not directly supported by the DPU. These accelerators, illus-
trated as {UL#1, ..., UL#N } in the figure, have been simply designed
using a standard HLS flow.

Listing 1 shows how to trigger DNN execution from the host
CPU, by offloading control to the Proxy-Controller. Lines 2-3 trigger
the execution of the Proxy-Controller, then the while loop at line 5,
allows to wait for the task completion, that will be notified by the
Proxy-Controller to the host CPU.

1 while (1) {
2 // wait the Cortex A53 start signal
3 while(* _pcore_start != SIG_START)
4 ;
5 // program DPU registers
6 xdpu_prog(wks , par , src , dst , instr);
7 // start the DPU engine
8 xdpu_start(SIG_START);
9 // wait DPU to complete
10 while (! xdpu_ended ())
11 ;
12 xdpu_int_clear ();
13 // notify the host
14 *_pcore_end = SIG_ENDED
15 }

Listing 2: Proxy-Controller firmware to control the DPU.

Listing 2 shows the firmware code executed by the Proxy-Controller.
First, it waits for the trigger coming from the host CPU (line 3).
After that, the DPU registers are initialized in line 6 with param-
eters coming from the host CPU. Line 8 is the flag to trigger the
execution of the DPU engine, while in line 10, the Proxy-Controller
polls the completion register of the DPU, indicating that the neural
network execution is ended. Finally, in line 14, the host CPU is
notified for the completion and the busy wait (line 5 in Listing 1) is
unlocked.

3 Experimental Results
The reference platform that we used to conduct the experiments
is the AMD/Xilinx ZCU102, the most widespread high-end plat-
form to the Zynq UltraScale+ family. It features dual processor
CPU complex, composed of a quad-core ARM Cortex A53 for the
applications and a dual-core ARM Cortex R5 for real-time applica-
tions. To validate the proposed ideas we used the Vitis AI 2.01, a
commercial framework from AMD/Xilinx that contains the FPGA
1https://github.com/Xilinx/Vitis-AI/tree/2.0
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Figure 2: Structure of the MobileNetv3 Small, with unsupported operations and memory transfers involving DRAM and FPGA.

(a) ULs in software on ARM CPU (b) ULs on HLS accs with remote control (c) ULs on HLS accs with Proxy Computing

Figure 3: Comparison of Unsupported Layers (ULs) execution approaches

hardware design containing the DPU engine and all the software,
libraries and applications needed to accelerate neural networks on
the FPGA. AMD/Xilinx also provides the Vitis AI Model Zoo, which
is a repository that contains pre-trained neural network models.
To simplify the deployment of the DPU engine we implemented a
hardware design containing only one DPU core synthesized with
250MHz for the FPGA logic and 500MHz for the DSPs. The four
ARM Cortex A53 run a minimal Linux distribution, while the Proxy-
Controller, implemented using the AMD MicroBlaze2, executes in
bare-metal mode. As reported in Fig. 1 we deployed local memory
banks, implemented using Block RAM (BRAM). The local memory
can be accessed by all the PEs.

3.1 Case study — MobileNet implementation
It is common that a custom-made neural network model can inte-
grate layers that are not currently supported by the DPU engine,
and that must be executed outside of the engine itself. This typically
2https://www.xilinx.com/products/intellectual-property/microblazecore.html

entails executing such layers in software on the host CPU, which
implies transferring the execution between the host CPU and the
DPU engine multiple times, consuming a significant fraction of the
execution time and dimming the benefits reaped from the hardware
acceleration.

To conduct our experiments, we analyzed the MobileNetv3 Small
[7], a widely used neural network for image classification trained on
the Imagenet dataset [4]. This model consists of repeated layer struc-
tures, as shown in Fig. 2. Its backbone includes eleven instances of
the Bneck block, composed of convolutions, ReLUs, sigmoids, depth-
wises, and global poolings. The latter three operations (highlighted
in gray) are unsupported by the DPU engine, requiring memory
copies between FPGA and DRAM (red box). Consequently, the
DPU compiler generates a binary with multiple neural network
graphs (30 in this case), that represent the portions of the neural
network that can be executed on the DPU engine. Fig. 3 presents
the execution time breakdown for MobileNetv3 Small across three
scenarios.

https://www.xilinx.com/products/intellectual-property/microblazecore.html
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Plot 3a shows the baseline approach, where the host CPU con-
trols the DPU and executes unsupported layers. The red bars in-
dicate DPU computation time, blue represents memory transfers
(including control overhead such as Vitis AI Runtime (VART) library
calls and AXI transactions), and yellow denotes CPU execution of
unsupported layers, that is the majority of total execution time.
A natural solution is to synthesize dedicated accelerators. How-
ever, traditional methodologies instantiate separate accelerators for
each unsupported layer, leading to inefficient remote control and
excessive memory transfers.

Plot 3b shows execution with HLS-generated accelerators, cre-
ated by directly synthesizing the same C++ code used in software
execution. These accelerators use local BRAM for input/output stor-
age, with data transfers handled by the CPU. While this approach
significantly accelerates unsupported layers (yellow bars), remote
control overhead (black bars) and memory transfer delays (dashed
blue) remain. The latter could be mitigated with manual overlap
of computation and data movement, allowing an ideal best-case
estimation by ignoring these delays.

Plot 3c illustrates execution with our Proxy Computing paradigm.
While DPU computation remains unchanged, memory copies are
entirely eliminated (zeroed blue bars). Dedicated HLS accelerators
benefit from local execution advantages, but additionally, local
control via the Proxy-Controller removes remote CPU overhead and
avoids unnecessary memory transfers by leveraging shared local
memory.

We evaluate the impact of our methodology on the end-to-end
execution of the MobileNetv3 Small neural network, observing sig-
nificant speedups. When using HLS accelerators with remote con-
trol and considering worst-case memory copy time, the execution is
actually slower than the baseline, achieving only 0.58× speedup. In
the ideal best-case scenario, where memory copy time is completely
neglected, the speedup improves to 2.36×. Finally, with our Proxy
Computing approach, we achieve a significantly higher speedup of
4.09×, demonstrating the efficiency of our methodology in reducing
overhead and optimizing execution.

4 Conclusion
This work studied how our overlay infrastructure enabling the
Proxy Computing approach targeting FPGA HeSoCs, can be effec-
tively adopted to optimize the inference latency of AI models using
the Deep Learning Processing Unit (DPU). Our proposed mecha-
nism allows: i) to reduce costly software interactions of the typical
remote form of accelerator control, between host CPU and FPGA; ii)
to reduce unnecessary data movements involving distinct memory
spaces. We showed that if the neural network model is composed of
multiple sub-graphs, as in the case of the MobileNetv3 Small neural
network, using our Proxy Computing paradigm, we can achieve up
to 4× of speedup compared to the state of the art.
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