
Convolutional Neural Networks
on embedded automotive platforms:

a qualitative comparison
Gianluca Brilli, Paolo Burgio and Marko Bertogna
University of Modena and Reggio Emilia, Modena, Italy

88740@studenti.unimore.it, {paolo.burgio, marko.bertogna}@unimore.it

Abstract—In the last decade, the rise of power-efficient, het-
erogeneous embedded platforms paved the way to the effective
adoption of neural networks in several application domains.
Especially, many-core accelerators (e.g., GPUs and FPGAs) are
used to run Convolutional Neural Networks, e.g., in autonomous
vehicles, and industry 4.0. At the same time, advanced research
on neural networks is producing interesting results in computer
vision applications, and NN packages for computer vision object
detection and categorization such as YOLO, GoogleNet and
AlexNet reached an unprecedented level of accuracy and perfor-
mance. With this work, we aim at validating the effectiveness and
efficiency of most recent networks on state-of-the-art embedded
platforms, with commercial-off-the-shelf System-on-Chips such
as the NVIDIA Tegra X2 and Xilinx Ultrascale+. In our vision,
this work will support the choice of the most appropriate CNN
package and computing system, and at the same time tries to
“make some order” in the field.

Index Terms—Automotive systems, Convolutional Neural Net-
works, GPU,FPGA, YOLO, Tegra, Ultrascale

I. INTRODUCTION

Convolutional neural network (CNN) are today adopted in
tens of applications, ranging from industry 4.0, autonomous
driving, medical, and more in general wherever computational-
intensive tasks (such as computer vision tasks) must run in
real-time 1. In CNNs, thousands of logically independent
convolutional kernels execute in parallel, making modern
many-core accelerators, such as GP-GPUs and FPGAs, the
preferable choice of system engineers to achieve the optimal
performance/power tradeoff in their designs. These platforms
typically couple a multi-core host, and accelerators that can
be either based on i) GP-GPUs [13], [12], ii) on “pure”
many-cores [6], or iii) on more flexible, reconfigurable log-
ics [18], where hundreds of custom Processing Units (PUs)
are designed using high-level design tools [3]. A typical
example of these platforms systems is the NVIDIA Tegra fam-
ily [13], [12], a GPU-based System-on-Chip (SoC) originally
designed for smartphones and tablets, and more recently for
autonomous-driving systems [13], [16], delivering a tremen-
dous performance-per-watt. Also Field Programmable Gate
Arrays have a great potential for powering up CNNs, not only
for the extreme power efficiency at sub-byte operations, but
also because they can be “hot” reconfigured on-the-fly within
few milliseconds. The Xilinx Ultrascale+ [18] is at the state-
of-the-art in the field. In this work, we plan to extensively
analyze and validate state-of-the-art CNN packages running on
cutting-edge heterogeneous many-core accelerators, in terms
both of performance and power consumption. We especially

1Here we mean soft real-time, where average performance is still the major
requirement, as opposite to hard RT, where worst case performance and timing
predictability are.

Fig. 1. Host-Accelerator Architecture

focus on YOLO and its variants [14], [1] as a network for
object detection, and on AlexNet [8] for image categorization.

This paper is structured as follows: Section II depicts the
two architectures considered in this work, while Section III
shows in details properties and structure of the considered
neural networks. Section IV is the main contribution, and
it shows our analysis, in terms of performance (frames-
per-second, FPS), and power consumption. Section V some
previous non-exhaustive works that are somehow related to
ours, and, finally, Section VI highlights some conclusions and
future works.

II. AUTOMOTIVE ARCHITECTURES

We target a typical architectural template of modern em-
bedded systems, where a host multi-core is coupled with a
power-efficient many-core accelerator (see Figure 1). We target
two different architectural “flavors”, namely one based on GP-
GPUs accelerator, and one based on reconfigurable FPGA
logic. The considered SoCs, respectively a NVIDIA Tegra
X2 [12], and a Xilinx Ultrascale+ [18], represent the most
advanced technologies available on each market.

GP-GPU: the NVIDIA Tegra family The Tegra X2 plat-
form embeds an esa-core host with Big.SUPER configuration
and a GPU with 2 NVIDIA Streaming Multiprocessors (SM)
of the Pascal family, summing up to 256 CUDA cores. Big
cores are four ARM A57, while SUPER cores are two ARM-
based, NVIDIA’s proprietary technology named Denver. The
platform is claimed to achieve 1 TFLOP of computing power,
within approximately 20 Watts. We indeed experience these
numbers in our experiments.

Reconfigurable logics: the Xilinx Ultrascale+ The sec-
ond platform we consider is Xilinx Ultrascale+ [18] (XU+),
a next-generation reconfigurable heterogeneous platform for
embedded systems. Also the XU+ board features a multi-
core subsystem, which couples small, power-efficient ARM



A53 cores and a real-time grade core, ARM Cortex R5. The
SoC also features programmable logic, and a Mali GPU,
which we leave out of the picture, for the moment. The XU+
board has richer I/O connectivity than the TX2; hence, in our
experiments, we expect its power consumption to be higher.

III. TARGET NEURAL NETWORKS

Convolutional Neural Networks or CNNs are composed by
multiple neuron layers, and, at each layer, features (informa-
tion) are collected from the input images (called input feature
maps – fmaps). Typical CNNs are composed by tens of layers,
summing up to thousands of neurons concurrently executing,
hence they take great benefits from acceleration on many-core
platforms. The most compute-intensive operation performed
by CNN layers is the discrete 2D-convolution, defined as:

oki,j =

Din∑
c=0

KH∑
h=0

KW∑
w=0

(wk
h,w,cxi+h,j+w,c) + bk

In today’s embedded systems, CNNs are mainly adopted
to perform two tasks, that is, i) image classification into one
or more categories, which is probably the most well-known
problem in computer vision, and ii) object detection inside
image/video frames, which is more computationally complex.
In our work, we consider representative CNNs from both
domains.

Detection: You-Only-Look-Once (YOLO) The networks
for objects detection studied in this work are YOLO (You-
Only-Look-Once) and some variants. They were proposed by
Redmon et al. in [14]. In particular, the YOLO-based models
tested are i) the original network, which has 23 convolutional
layers, and processes images with resolution 408×408; Small-
YOLO, a variant with fewer fully connected layers (and smaller
memory footprint), and iii) Tiny-YOLO, which is composed by
only nine convolutional layers, hence has the lowest end-to-
end latency, but also the lowest accuracy.

Classification: AlexNet AlexNet was proposed by
Krizhevsky et al. [8], and has only 5 convolutional layers. It is
a Deep Convolutional Neural Network for image classification,
and it won the ILSVRC-2012 competition [15], achieving a
winning top-5 error rate of 15.3%, compared to 26.2% by the
runner-up.

IV. EXPERIMENTAL EVALUATION

Experimental methodology. We are interested in assessing
both performance metrics, i.e., processed frames-per-seconds
and power consumption. In our experiments, we used the same
(synthetic) data-set of images for both the types of networks,
in case resized to match the size of each CNN fmap. We
collect power consumption by connecting an amperometer
to the board power supply, and measure the dynamic power
consumption as Pdyn =

∫∞
0

i(t)VDDdt. This formula has
been approximated by multiplying the mean current absorbed
and the voltage supply, as follows: Pboard = VDD × Imean.
Then, we derived Pinf by subtracting the power of the
inference phase, and the one consumed when the SoC is idle:
Pinf = Pboard−Pidle. The metric roughly captures the power
consumed during network inference, and, in the future, we
want to measure the power consumption of the sole SoC using
more accurate, industrial (yet expensive) profiling tools, such
as Lauterback.

As said, we report the power consumption and throughput,
measured in frames-per-seconds, of the targeted networks. For

TX2, we show 3d-plots, where GPU frequency is scaled (x-
axis) from about 100MHz up to 1.3GHz, and CPU frequency
(y-axis) ranges from about 300MHz up to about 2GHz. The
metric of interest is shown in the z-axis. Colors of surface
charts ease the reading of y-axes values in the 3d plots. TX2
runs an Ubuntu Linux, and we set the highest (real-time)
priority for the task that offloads data and computation to the
network running on the accelerator, to avoid context switches.
For Zynq Ultrascale+, we developed an application that calls
the NN hardware accelerator on programmable logic (PL). The
operating system is Petalinux, a Linux-based system provided
by Xilinx.

Classification: AlexNet Figure 2 show the frames-per-
second achieved by the AlexNet CNN on Tegra X2. We
see how interference done on TX2 is faster than UC+ by
a factor of 10×. As shown in Figure 2, we astonishingly
experience up to 600 FPS for the TX2, while the FPGA-
based implementation running on xfDNN engine achieves
slightly more than 60 FPS, as reported in Table I. In Figures
3 and 4, and in Table I, it is possible to see a comparison of
the power consumption (Pboard and Pinf ) during inference
on UC+. Looking at Table I, we see a huge performance

TABLE I
ALEXNET ON ZYNQ ULTRASCALE+

Framework PS Freq. PL Freq. T.put Pboard Pinf
[MHz] [MHz] [FPS] [Watt] [Watt]

PipeCNN 1110 100 0,2462 20,2231 0,4603
xfDNN 2400 200 61,554 23,1165 0,5097

gap between the same network running on two NN engines
(namely, PipeCNN [17] and xfDNN [11]) tested on Zynq
board. This is because the PipeCNN OpenCL framework is not
optimized nor fully integrated in Xilinx SDSoC development
environment. This highlights the importance also of the engine
framework, and not only of the network itself, on performance.
Power consumption is still comparable.

Figure 2 shows that in the TX2 platform, performance scales
with the CPU clock, but not with the GPU clock. This happens
because the application is heavily memory bound, and the data
transfers are managed by the CPU, which becomes sensitive
to clock scaling. The compute part on the GPU is insensitive
to clock frequency for a relatively “simple” problem such as
image classification. This does not happen for more complex
tasks, such as object detection, where the GPU processes
higher workloads. Figure 5, which refers to YOLO, shows
how performance scales both with CPU and GPU clock.

Looking at power consumption, we see how it greatly varies
for the TX2 and XU+ boards, i.e., respectively 8W and 20W.
This is due to the big difference on the I/O hardware modules
that we can see on both boards. If we consider the sole SoC,
however (Pinf ), XU+ performs slightly better. As explained,
Pinf captures the power consumed by the SoC while doing
actual computation, and results confirm the highest power
efficiency of FPGA technologies when compared to GPUs.

Detection: YOLO We explore three variants of YOLO,
namely full YOLO, Small-YOLO (slightly tinier than YOLO,
with smaller memory footprint), and Tiny-YOLO, a minimal
version of YOLO with only nine convolutional layers. Table
II reports the performance on Zynq Ultrascale+. For Tegra
X2 implementations, Figures 5, 6 and 7 report results for the
“original” YOLO, while Figures 8, 9 and 10 show the ones



Fig. 2. AlexNet on TX2 (Throughput)

Fig. 3. AlexNet on TX2 (Pboard)

Fig. 4. AlexNet on TX2 (Pinf )

of Tiny-YOLO . In this case, performance in terms of frames-
per-second are similar. We experience 6.6 FPS for YOLO on
UC+, and about 8 FPS on TX2. Tiny-YOLO achieves up to
22.6 FPS on UC+, and about 30 FPS on TX2. Power consump-
tions are almost comparable, but, counter-intuitively, Tiny-
YOLO consumes slightly more than its “bigger” variants. It is
probably due to some approximation/error in our measurement
methodology, and we will investigate this further.

V. RELATED WORKS

Nakahara et al. [10] developed an FPGA version of YOLO
where inputs and weights are binarized [5], this network is
implemented with SDSoC, an high level synthesis tool pro-
vided by Xilinx. They also carry an extensive benchmarking
of their network running on Zynq Ultrascale+ and Tegra
X2, achieving 40 FPS at 4.5 Watts for the UC+. Thile the
TX2 implementation only reaches 2 FPS at 7 Watt. In both

TABLE II
YOLO ON ZYNQ ULTRASCALE+

Network PS Freq. PL Freq. T.put Pboard Pinf
[MHz] [MHz] [FPS] [Watt] [Watt]

YOLO 2400 200 6,6728 23,7292 0,6959
Small-YOLO 2400 200 7,9311 23,7137 0,6804
Tiny-YOLO 2400 200 22,6807 24,1798 1,1465

Fig. 5. YOLO on TX2 (Throughput)

Fig. 6. YOLO on TX2 (Pboard)

Fig. 7. YOLO on TX2 (Pinf )

cases, while power consumption is acceptable, performance
can certainly be improved.

Work in [14] shows an highly optimized FPGA implemen-
tation of YOLOv2, but their benchmarking does not take into
account other network typologies and other more efficient GP-
GPU implementations of YOLOv2.

Xilinx engineers proposed a reduced/quantized version of



Fig. 8. Tiny-YOLO on TX2 (Throughput)

Fig. 9. Tiny-YOLO on TX2 (Pboard)

Fig. 10. Tiny-YOLO on TX2 (Pinf )

Tiny-YOLO called Tincy-YOLO [1], which operates at 16
FPS, consuming 6 Watt for the FPGA accelerator. In their
work, they compare the accuracy of Tincy-YOLO with respect
to other versions of YOLO, but they don’t compare against
GP-GPUs implementation. Our work completes their analysis.

The group of Don Wang [17] developed an FPGA frame-
work for image classification and a comparison of the CNN
models AlexNet and VGG-16 [7] on both Altera and Xilinx
FPGAs. In this case, the shortest classification time is achieved
by Altera DE5-net and is 23 FPS for AlexNet and 1.4 FPS
for VGG-16, with a power consumption of 27.3 Watt and 29.8
Watt respectively.

VI. CONCLUSIONS

We evaluated the power consumption and performance of
image classification and objects detection Convolutional Neu-
ral Networks, on representative embedded platforms based on

GP-GPU and FPGA accelerators. We experience comparable
performance for the object detection networks, due to their
complexity, while for classification network, GP-GPUs still
outperform (non-optimized) FPGAs by at least one order of
magnitude. On the other hand, FPGAs are better from the
power efficiency viewpoint.

It must be pointed out that, porting complex software
like CNNs on programmable logics is cumbersome, mainly
because High Level Synthesis still cannot be as efficient as
traditional design, and the open-source drivers and frameworks
are not yet optimized. Also, measuring power consumption
of the SoC only without using expensive industrial tools
is cumbersome, and we will study new and more accurate
methodologies to do it.

Results in Table I show that also the network engine can
play a significant role. In the future, we will test also other
frameworks such as Caffeinated [2] or NEURaghe [9]. We are
interested in exploring other network models with binarization,
such as [5], [10] and [4]. We will also put in the picture other
representative platforms, such as Kalray MPPA many-core [6],
and application-specific circuits for NN.

This work is supported by the HERCULES project, funded
by European Union’s Horizon 2020 research and innovation
program under grant agreements No. 688860.

REFERENCES

[1] M. Blott (Xilinx, Inc.). Tincy YOLO: a real-time, low-latency, low-
power object detection system running on a Zynq UltraScale+ MPSoC,
2017.

[2] R. DiCecco, G. Lacey, J. Vasiljevic, P. Chow, G. Taylor, and S. Areibi.
Caffeinated fpgas: Fpga framework for convolutional neural networks.
In 2016 International Conference on Field-Programmable Technology
(FPT), pages 265–268, Dec 2016.

[3] T. Feist. Vivado Design Suite, 2012.
[4] H. N. Haruyoshi Yonekawa. GUINNESS: A GUI based binarized Neural

NEtwork SyntheSizer toward an FPGA, 2017.
[5] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio.

Binarized neural networks. In D. D. Lee, M. Sugiyama, U. V. Luxburg,
I. Guyon, and R. Garnett, editors, Advances in Neural Information
Processing Systems 29, pages 4107–4115. Curran Associates, Inc., 2016.

[6] Kalray Corporation. Many-core Kalray MPPA, 2012.
[7] A. Z. Karen Simonyan. Very deep convolutional networks for large-scale

image recognition. 2015.
[8] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification

with deep convolutional neural networks. In Proceedings of the 25th
International Conference on Neural Information Processing Systems -
Volume 1, NIPS’12, pages 1097–1105, USA, 2012. Curran Associates
Inc.

[9] P. Meloni, A. Capotondi, G. Deriu, M. Brian, F. Conti, D. Rossi,
L. Raffo, and L. Benini. Neuraghe: Exploiting CPU-FPGA synergies for
efficient and flexible CNN inference acceleration on zynq socs. CoRR,
abs/1712.00994, 2017.

[10] H. Nakahara, H. Yonekawa, T. Fujii, and S. Sato. A lightweight yolov2:
A binarized cnn with a parallel support vector regression for an fpga.
In Proceedings of the 2018 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, FPGA ’18, pages 31–40, New York,
NY, USA, 2018. ACM.

[11] N. Ni and V. Kathail (Xilinx, Inc.). Caffe to Zynq: State-of-the-Art
Machine Learning Inference Performance in Less Than 5 Watts, 2017.

[12] NVIDIA. The Tegra X1 Platform, 2015.
[13] NVIDIA. NVIDIA DRIVE PX: scalable AI Supercomputer For Au-

tonomous Driving, 2017.
[14] J. Redmon and A. Farhadi. YOLO9000: better, faster, stronger. In 2017

IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2017, Honolulu, HI, USA, July 21-26, 2017, pages 6517–6525, 2017.

[15] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and
L. Fei-Fei. Large scale visual recognition challenge 2012. http://image-
net.org/challenges/LSVRC/2012/index, 2012.

[16] Shri Sundaram. Building autonomous vehicles using Drive PX 2, 2017.
[17] D. Wang, K. Xu, and D. Jiang. Pipecnn: An opencl-based open-source

fpga accelerator for convolution neural networks. In 2017 International
Conference on Field Programmable Technology (ICFPT), pages 279–
282, Dec 2017.

[18] Xilinx, Inc., . The Xlinx Ultrascale Architecture.


