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Abstract—Modern autonomous vehicles have to cope with the
consolidation of multiple critical software modules processing huge
amounts of real-time data on power- and resource-constrained
embedded MPSoCs. In such a highly-congested and dynamic
scenario, it is extremely complex to ensure that all components
meet their quality-of-service requirements (e.g., sensor frequen-
cies, accuracy, responsiveness, reliability) under all possible work-
ing conditions and within tight power budgets. One promising
solution consists of taking advantage of complementary resource
usage patterns of software components by implementing dynamic
resource provisioning. A key enabler of this paradigm consists of
augmenting applications with dynamic reconfiguration capability,
thus adaptively modulating quality-of-service based on resource
availability or proactively demanding resources based just on the
complexity of the input at hand. The goal of this paper is to explore
the feasibility of such a dynamic model of computation for the
critical localization function of self-driving vehicles, so that it can
burden on system resources just for what is needed at any point in
time or gracefully degrade accuracy in case of resource shortage.
We validate our approach in a harsh scenario, by implementing
it in the localization module of an autonomous racing vehicle.
Experiments show that we can adapt to variations in operational
conditions such as the system workload, and that we can also
achieve an overall reduction of platform utilization and power
consumption for this computation-greedy software module by up
to 1.6× and 1.5×, respectively, for roughly the same quality of
service.

I. INTRODUCTION

Embedded processing systems for Autonomous Vehicles
(AVs) must timely process a significant amount of information
in order to interpret the external world and localize the vehicle,
ultimately enabling a safe and efficient driving experience [1].
System engineers are looking with interest at embedded and
power-efficient Multi-Processor Systems-on-Chip (MPSoCs),
featuring few coarse-grained computing cores and several co-
processors such as integrated GPGPUs, reconfigurable logic or
ASIC accelerators [2]–[4] . Despite being less powerful than
“traditional” multi- and many-cores from the High-Performance
Computing (HPC) domain [5], these platforms outperform
them in terms of power efficiency, smaller size and lower
hardware complexity, making them the preferred choice for
future self-driving vehicles of practical interest.

Real software stacks for self-driving vehicles typically con-
sist of several computation-greedy software modules that end
up being consolidated onto the same hardware platform to
reduce the complexity of the networked system [6]. As a result,
they end up competing for the same constrained set of com-
putational resources (e.g., less than 10 general purpose cores),
which makes it challenging for them to keep up with input data
volumes and timing constraints, as well as to preserve their
quality metrics over time. This situation is even exacerbated
in real-life vehicles, where critical application must also co-
exist with non-safety critical modules, such as telemetry, HVAC
and infotainment, and where the working conditions (the so-
called Operational Design Domain – ODD [7]) are extremely

dynamic and unpredictable. This problem easily becomes a
showstopper, and calls for more efficient strategies to unlock the
full potential of the parallel hardware through efficient sharing.

To this extent, this paper advocates that one of the most
promising techniques for efficient resource sharing consists of
taking advantage of complementary resource usage patterns
of software components through dynamic resource provision-
ing [8]–[11]. A key enabler of this paradigm consists of aug-
menting applications with dynamic reconfiguration capability,
thus adaptively modulating quality-of-service based on resource
availability or proactively demanding resources based on the
complexity of the input at hand.

Exposing such a dynamic reconfigurability would open up
new opportunities for system optimization and for operating op-
timally in a wide range of situations (especially conditions that
threaten successful execution). On the one hand, applications
would request resources adaptively by following a ”use-just-
what-you-need” philosophy, which avoids the inefficient sizing
of resource quotas based on worst-case requirements. On the
other hand, critical applications would be able to gracefully
degrade their quality-of-service (yet still fulfilling their mission)
in case of resource shortage.

To validate our intuition, we deploy on an representative em-
bedded multi-core computer a highly-demanding, safety-critical
application from the challenging scenario of autonomous racing
vehicles. In particular, autonomous racing exacerbates the crit-
icality and the requirements of the localization function, since
when driving near the limits of handling the system has minimal
margin for errors. Thus, the quality metrics of localization
algorithms turn out to be highly sensitive to the interaction
with other aggregated software modules.

For this reason, the ultimate goal of this paper is to ex-
plore the feasibility of a dynamically-reconfigurable application
model for the critical localization function of self-driving vehi-
cles, so that the latter can safely navigate the environment while
dynamically adapting its configuration to changing internal
and external operating conditions. In particular, we focus on
Particle Filter (PF) [11], [12], a mainstream Montecarlo-based
algorithm that locates the ego-vehicle within a given map,
which is state-of-the-art for 2-D based LiDAR localization.
Historically, researchers proved [13], [14] that it is possible –
and effective – to dynamically adjust the operational parameters
of this algorithm, with the goal of maximizing its accuracy.
However, they do not consider context nor platform information
to tune the dynamic adaptivity.

This work improves upon state-of-the-art in a twofold direc-
tion. On the one hand, we explore the dynamic reconfigurability
of the PF in a multi-dimensional optimization space, spanning
number of particles, number of cores, response latency and
accuracy. On the other hand, we set up a methodology for
characterizing the correlation among the above parameters for



the different sections of the racing circuits. Then, we deploy a
semi-static reconfiguration strategy that statically computes the
best PF configuration for a specific resource budget and circuit
section, and dynamically switches the operating condition as
the racing car moves across the map. We compare traditional,
fully-static configuration strategies against our semi-static ap-
proach. We spot critical operating conditions associated with
system overloading and harsh circuit sections where traditional
approaches largely fail to meet real-time constraints (in our
case, the frequency of the LiDAR sensor, i.e., 40Hz). In
contrast, our approach is able to meet them by gracefully
degrading the localization error while still keeping it within
acceptable bounds. Moreover, using the same technique, we
could proactively reduce the number of resources (threads/-
cores) requested by the application while still meeting its
timing constraints for roughly the same quality of service.
In this case, our experiments show an overall reduction of
platform utilization and power consumption by 1.6× and 1.5×,
respectively.

II. RELATED WORKS

A. Dynamic allocation of resources

In this field, a wide literature spawns across the last decades,
from the moment when multi-threading and multi-process
technologies became popular. For reasons of space, we report
the works that are closest to our approach, either because they
target similar hardware, or because they are from the same
application domains.

Koduri et al. [8] propose an architecture that groups cores,
and allocate them to applications, in a many-core systems. Un-
like us, they target NoC-based many-cores (i.e., 16+ cores), and
offer a generic solution for any combination of architectures.
Moreover, we have a totally different approach, because we
suggest to include qualitative application-specific performance
indicators, such as the accuracy, in our solution.

Shamsa et al. [9] propose a resource management system
targeting heterogeneous multi-core platforms. The aim of the
proposed framework is to find an optimal resource allocation
for concurrent applications while optimizing performance and
energy consumption. The authors proposed an evaluation using
a Particle Filter algorithm, but unlike our work, they didn’t
provide an evaluation on a real use-case nor analyzed the
Particle Filter accuracy.

There is a literature on Work-Stealing, such as the works
from Cheng [15] and Marongiu [16]. State-of-the-art in the
field targets architectures that greatly benefits by the adoption
of explicitly managed ScratchPad Memories (SPMs). Our ap-
proach does not make any level of assumption on any under-
lying hardware, and, moreover, we include application specific
metrics and parameters (i.e., particles) as “tuning knobs”, in
our scheduler.

From the field of robotics, Farinelli and Iskandar [17], [18]
proposed online techniques to dynamically assigning threads to
running applications. Both works are quite different compared
to our work. The first one is focused on a multi-robot patrolling
application, where the authors evaluated their DTA-Greedy and
DTAP algorithms. The aim of the latter is to dynamically
assigning threads to reduce the energy consumption of applica-
tions while still preserving the requirements. Unlike our work,
their contribution is generic and it is not focused on a real-time
localization as ours.

B. Adaptive Particle Filters
Literature offers a number of works with algorithmic so-

lutions to reduce the computational complexity, or platform-
specific accelerators, to Particle Filtering localization on con-
strained embedded devices for robots or cars. For instance,
Goksoy [10] proposes what he calls “dynamic adaptive schedul-
ing (DAS)”. The main focus of this work is to optimize the
task execution time and the scheduling overhead. However,
unlike our work, application-specific parameters (like number
of particles) are not considered.

Krishna [19], Chau [20] and Bernardi [11] target hardware
accelerators in an FPGA-based systems. These approaches
employ fully static design space exploration loop to find
the optimal trade off between execution time and accuracy.
Interestingly, the latter [11] shows how the number of particles
could be adapted (in a fully static manner, in their case) to
meet application timing constraints, which gives support to our
intuition.

Fox [21] proposes a particle resampling method based on
the Kullback-Leibler Divergence (KLD) metric to dynamically
adapt the size of the particle set based on an estimate of the
approximation error. Charroud [22] proposed a method to keep
only relevant particles, using k-means and sigma points algo-
rithms, with the aim to decrease the computational complexity
of the Particle Filter, applied to real-time systems. Other works,
proposed by Nagavenkat [23] are an hybrid approach based on a
global/local scan matching to keep only relevant particles on the
Resampling stage of the Particle Filter. Similar to the previous
one, Kümmerle [24] reduced the computational complexity of
the Particle Filter exploiting lightweight and compact geometric
primitives.

As shown, all of these works are part of the wide(st)
known literature on adaptive Monte-Carlo methods, and on
Particle Filters more specifically [13], [14], [25]. However, in
all of them, the adaptive behavior has the goal of minimizing
the localization error, and doesn’t consider any other system
bounds like latency or core utilization. Furthermore, none of
them explores how the PF component might co-exist with
other critical applications on resource-constrained embedded
platforms.

III. SYSTEM DESIGN

This section describes the target system. We first intro-
duce the target AV platform, namely a 1:10 race car called
F1/10 [26], then we discuss the Particle Filter algorithm.
Finally, we show our semi-static thread adjustment implemen-
tation, which we validate in the next section.

A. Target system
The F1/10 racing vehicle is a scaled prototype platform

enabling research and teaching in the field of AVs. The vehicle
is built to be representative of a real vehicle. Figure 1 shows the
sensor set of the vehicle, and a typical AV stack. It is based on
ROS2 [6], a typical choice in modern robots. This prototype is
equipped by a 2D LiDAR sensor that produces a point-cloud,
which directly feeds the PF algorithm, in conjunction with
the wheel odometry data and – a typical choice – an offline
pre-computed map. Our specific implementation of the Particle
Filter will be explained in depth in the following subsection.

After the localization step, there comes the trajectory plan-
ning and control components, for which we have two possible
options. The first is a non-reactive Pure Pursuit (PP) [27]



Fig. 1: Target AV stack.

controller, typically used for time attacks, such as racing
qualifications. It assumes that an offline pre-computed optimal
trajectory for the track is known, which is quite common in
most of the races. This approach, however does not consider
any obstacle intersecting the optimal trajectory. On the other
side, PP can also be integrated, or replaced, with a reactive
local approach, e.g., to generate multiple trajectories on-the-
fly, in case the ideal pre-computed one is occluded, or if we
are planning an overtake. We employ a state-of-the-art dynamic
planner which features Frenet-frame trajectory generation [28].
In our experiments, both PP and Frenet act as concurrent appli-
cations that compete with PF for the available computing cores.
Note that, they all are safety-critical components, hence, they
all are at the same level of criticality/priority, in our system. In
order to safely test and develop, the F1/10 platform comes with
a simulator, called F1tenth Gym [29], which enables Hardware-
in-the-Loop, and that we use in our experiments. Thanks to the
adoption of the ROS2 framework, in conjunction with F1tenth
Gym, we are able to generate race simulation recordings with
synthetic sensor data inside real racetrack maps.

B. Particle filtering for AV localization
Formally speaking, Particle Filters solve a family of prob-

lems whose goal is to estimate the posterior probability dis-
tribution of the hidden model states: in our case, the “state”
is the position of the vehicle in a known map. This particular
technique, approximates the distributions of interest by means
of random (weighted) samples, called particles. Applying this
method to vehicle localization with 2D LiDARs, the weighted
particle set represents an approximation of the probability
distribution with relation to the real vehicle pose. The pose
estimation process is based on the generation of a particle set,
and each particle constitutes an hypothesis for the pose. Each
hypothesis is then validated against the real world observation
of the LiDAR sensor, and weighted.

In the first iteration, the algorithm is given a pose estimate
and the particles are spawned with a uniform distribution
around it. Each particle is represented as a 2D point with
orientation (x, y, yaw). After this first initialization step,
the following loop is executed to integrate each LiDAR and
vehicle odometry measurement:

• Motion model – ≈ 5% exec time: by leveraging a kine-
matic vehicle model, each particle is marched forward in
time by integrating the vehicle wheel odometry data.

• Point Cloud Downsampling – ≈ 15%: Since the raw
LiDAR data contains redundant information and is gen-

erally way too demanding to be processed on embedded
processors, we downsample the point cloud from 1080 to
60 points. This step reduces the overall complexity of the
subsequent ray marching phase.

• Ray Marching – ≈ 65%: For each particle, a set of rays
is generated to simulate the LiDAR measurement of each
pose candidate. This is done by marching a point in space
until it reaches a wall in the racetrack map.

• Weight Computation – ≈ 15%: In this phase each particle
in our hypothesis space is assigned a weight (i.e., a score)
depending on a distance function and the measurement of
the sensor. The expected value of the particle distribution
is output as the pose estimate.

• After computing the expected pose of the distribution we
Resample the particle set with a low variance approach.

Intuitively, spawning more particles create a more dense
distribution, which leads to a more accurate localization. This,
however requires more computational power and subsequently
increases the overall response time. Nicely, particles can be
processed independently, hence performance and accuracy scale
increasing the number of parallel threads. We build on the most
famous sequential implementation of the algorithm, namely, the
one from MIT [12], and we provide a parallel version 1, that
spawn hundreds-to-thousands of particles using OpenMP [30].

The most time consuming part of the application is the
ray marching, and that’s the best candidate for multi-threaded
parallelization. Our goal is to determine/trade the optimal
number of threads and number of particles under different
system workloads in an adaptive manner.

C. Adaptive algorithm design and methodology
To provide a deterministic test infrastructure for the par-

ticle filter, we recorded a synthetic sensor dataset inside of
the F1tenth Gym simulation environment [29]. We set up a
Hardware-in-the-Loop (HiL) infrastructure with a desktop PC
which simulates the sensors and an embedded board as the
target hardware to run the localization software. As embedded
platform, we used an NVIDIA Jetson, a typical choice for
resource constrained AVs. The Jetson is equipped with a quad-
core processor without superscalar extensions. Our localization
software does not exploit the embedded GPU, we leave this
exploration for future works. With HiL, we can collect high
fidelity data regarding, e.g., the CPU usage, power consumption
and localization latency of the algorithm, without requiring a
real vehicle.

With this system in place, we statically characterize the
workload and behavior of the PF application while varying
the number of particles and degree of parallelism. We further
split this data into different map sectors, to better analyze the
changing demands of resources with relation to the morphology
of the track (see Figure 2). Figures 3, 4 and Table I show
the results of the characterization. Figures 3a and 3b show
the execution time varying the number of particles (between
25 up to 1000) and threads for sectors 2 an 3 respectively 2.
The red planes represent the performance requirement, that is
fixed at 25ms, and it is given by the frequency of the LiDAR,
i.e., 40Hz. Intuitively, all the configurations that fall below the
red plane are feasible configurations, while on the contrary,

1https://github.com/HiPeRT/particle filter dta
2For the sake of readability these results are presented as surface graphs,

and for reasons of space we only plot the two most relevant sectors, but the
others exhibit similar behavior.



Fig. 2: The test racetrack, split in four sectors

# of Particles
Sector 2 Sector 3

RMSE [m] Std. Dev. [m] RMSE [m] Std. Dev. [m]
25 0.4555 1.1086 1.8875 3.3803
50 0.3936 1.0012 1.5934 2.8955
75 0.1672 0.0105 0.9236 1.1903
100 0.1688 0.0111 0.6804 0.7533
200 0.1658 0.0090 0.4424 0.1788
300 0.1622 0.0065 0.3792 0.1655
400 0.1616 0.0066 0.3603 0.1615
500 0.1625 0.0063 0.3606 0.1482
600 0.1543 0.0055 0.3358 0.1193
700 0.1501 0.0046 0.2910 0.0773
800 0.1516 0.0045 0.3027 0.1051
900 0.1518 0.0041 0.2897 0.0753

1000 0.1509 0.0053 0.2606 0.0697

TABLE I: Localization error (RMSE and RMSE standard
deviation) with varying number of particles.

all the points that are above the threshold don’t respect the
performance constraint and must be discarded.

An optimal configuration of particles/threads would prefer
a higher number of particles, to achieve a better localization
accuracy and a possibly low number of threads to proactively
freeing computational resources to other applications on the
autonomous driving stack.

Given the Particle Filter implementation discussed in Section
III, we notice a directly proportional relation between the Ray
Marching step execution time and the average wall distance.
Following this rationale, sector 2 has a significantly lower
computational load which also influences latency and power
consumption.

Figure 4 report the CPU core utilization in percentage
(Figures 4a and 4b), between 0% up to 400%, where 400%
means that all the four cores are at full throttle. Figures 4c and
4d show the CPU power consumption, expressed in Watts. Intu-
itively more particles and threads would imply an higher CPU
utilization, which in turn leads to a higher power consumption.

(a) Sector 2 Exec Time [ms] (b) Sector 3 Exec Time [ms]

Fig. 3: PF execution time varying the number of particles and
threads on sectors 2 and 3 of the race track. The red plane
represents the performance requirement of 25ms.

(a) Sector 2 CPU utilization [%] (b) Sector 3 CPU utilization [%]

(c) Sector 2 Power [Watt] (d) Sector 3 Power [Watt]

Fig. 4: CPU utilization and power consumption varying the
number of particles and threads on sector 2 and sector 3 of
the race track.

Different sectors may have different particle count requirements
to avoid divergence and maintain the localization error low. This
happens for example in sector 3, where high speeds and sudden
steering movements are inaccurately portrayed by the motion
model. This is noticeable by looking at the accuracy data in
Table I.

Since particle filtering is a probabilistic approach, different
test runs on the same sensor dataset may lead to different re-
sults. To characterize this variability, we run each configuration
over a high number of test runs and evaluate localization accu-
racy using two metrics: the average RMSE (Root-Mean-Square
Error) with relation to the ground truth trajectory, provided by
simulator, and the RMSE standard deviation, which models the
error variability during multiple test runs. Table I reports the
accuracy of the Particle Filter localization measured as RMSE
and its standard deviation. It’s easy to figure out that few
particles would imply higher localization errors with an high
standard deviation. For example, considering the sector 2, we
have ≈ 0.45m and ≈ 1.10m as RMSE and standard deviation,
while these values go down to ≈ 0.15m and ≈ 0.005m
maximizing the number of particles.

In the common static configuration case a certain static num-
ber of particles is chosen and refined for the whole racetrack.
This fully static approach, however generates a configuration
that is not always optimal in each sector. Our solution has the
objective to adapt the behavior of the application (by adjusting
the size of the particle set and the number of parallel threads)
based on this offline characterization of the racetrack. At the
end of each LiDAR integration loop, before the re sampling
phase, we perform the live parameter adjustment. Pseudo-code
is shown in Figure 5.

Initially, the application reads the available number of cores
using the standard CPU affinity Linux kernel API. The avail-
able number of cores is interpreted as a core budget for the
application. This core budget, in conjunction with the latency
characterization data, is used to infer the optimal particle set
size. For each sector, the optimal configuration takes into



Fig. 5: Pseudo-code that implements our approach

account i) the maximum number of threads, which is our CPU
core budget, and ii) given the sector ID and the budget, the
highest number of particles which guarantees the compliance
with the response time bound. Once the thread count and
particle set size are computed, we proceed with the resampling
phase normally.

We also implement a proactive core release approach in
sectors where the localization is “easy to compute”. We decide
to lower our core utilization in order to ”make space” for
other tasks, e.g., at low priority. To implement this, we reduce
our CPU core budget, and re-compute the optimal number of
particles using the same methodology we previously explained.

The use of offline characterization results makes our ap-
proach semi-static. However, we can easily implement a fully
dynamic approach, where the same profiling gets updated at
every lap in order to react dynamically to situations which are
not covered by the offline characterization.

IV. EXPERIMENTAL VALIDATION

A. Setup
The target platform is a NVIDIA Jetson Nano [2], a low-

end multi-core system that is already in production for AV
systems, and it is perfect for deployment on the F1/10 car. It
hosts a Quad-core ARM A57 1.43 GHz and 4GB of 64-bit
LPDDR4 memory. It features no superscalar extensions such
as hyperthreading, hence, we can safely assume that these four
cores can sustain the computational bandwidth of exactly four
software threads. The board also embeds an integrated GPU of
the Maxwell family, with 128 CUDA cores, which we anyway
don’t consider in our scenario, because the CUDA abstraction
layer is quite rigid, and does not provide much flexibility to
dynamic reallocation of threads from the application level.
Moreover, we plan to provide a methodology that is not specific
on the given hardware provider. Since the target board runs
a GNU/Linux Ubuntu distribution, with the standard GCC
toolchain and OpenMP runtime support, it enables the widest
applicability of our techniques to other platforms. Using this
software stack, we can gather live information on the actual
workload of the system, e.g., the utilization of ARM cores, or
power consumption.

B. Methodology
As previously explained, we run the parallel Particle Filter

that dynamically adjusts thread count and particle set size
with the Frenet planner and the PP controller as single-thread
interfering applications alongside it. We don’t investigate the
varying degree of parallelism and configuration space explo-
ration of the interfering applications despite their capability to
run multi-threaded because, in this work, we are not focusing on
system level effects, hence we perform analysis and characteri-
zation of the PF only. The same characterization and adjusting
methodology employed by the PF can also be replicated to
any other parallel application in the driving stack. System-level

Sector #Particles #Threads Latency [ms] Utilization [%] Power [mWatt]
S0 (only PF) 400 4 24.81 2.8514 3896.0284
S1 (only PF) 400 4 18.34 2.5273 3743.8056
S2 (only PF) 400 4 13.39 1.7105 3021.9390
S3 (only PF) 400 4 17.90 2.4301 3693.1250
S0 (w/interf) 400 4 69.08 0.9419 2279.8286
S1 (w/interf) 400 4 55.76 0.8511 2147.5556
S2 (w/interf) 400 4 37.18 0.7189 1888.5048
S3 (w/interf) 400 4 55.47 0.8315 2115.0000

TABLE II: Baseline for 400 particles and 4 threads, with and
without interfering applications.

Sector #Particles #Threads Latency [ms] Utilization [%] Power [mWatt]
S0 400 4 24.81 2.8514 3896.0284
S1 500 4 23.56 3.0899 4136.9874
S2 700 4 23.90 2.8929 3926.6198
S3 100 1 17.24 2.0194 3283.0331

TABLE III: Scenario I. When entering sector #3, the Particle
Filter budget gets decreased to 1. In order to meet the latency
constraints, the particle set size is reduced.

composability of adaptive applications is a quite interesting
topic, and deserves dedicated future research.

Let us now define a reasonable baseline with a static configu-
ration of 400 particles and 4 threads. This is a potentially race-
ready configuration that satisfies both latency and localization
accuracy bounds in all four sectors. We will now compare this
statically configured baseline (see Table II) with our adaptive
approach in two different scenarios.

Scenario I: self-adaptive PF. We assume the Particle Fil-
ter components fully leverage the four available cores, each
handling four threads processing 400 particles. As indicated in
Table II, in Sector 3, computation takes 17.90 ms. Subsequently,
a new process is initiated, reducing the computational allocation
for the PF to a single core. Static approaches, incapable
of dynamically adjusting thread and particle numbers (and
consequently, computational workload), result in a component
latency of 55.47 ms. This is approximately 3× slower and leads
to exceeding the deadline by over 30 ms, compromising the
overall performance and safety of the entire autonomous driving
stack. As illustrated in Table III, our system allows the Particle
Filter to adapt its budget and particle set size (to one core and
100 particles, respectively), meeting computational constraints
while experiencing minimal degradation in localization quality
(−9.21%, relative to the baseline without interference).

Scenario II: proactively releasing cores. In this test case,
reported in Table IV, the Particle Filter proactively reduces
its budget to 1 thread. This lowers the core utilization (1.6×)
and power consumption (1.5×), with respect to Table II, while
maintaining the localization response time below the timing and
with negligible accuracy loss (< 1%, relative to the baseline
without interference).

In this experiment, our goal was to prove the overall power
reduction. One can follow a different strategy, so that, during
this low-budget period, a new low-frequency low-priority task
(e.g. online race trajectory optimization, or telemetry) could
be launched on the now available cores. This opens up future
developments on the composition of different application sup-
porting this adjustment dynamically, at run-time.

We want to stress the fact that, in both scenarios, the particle
filter adjusts the number of particles to the optimal value,
delivering the highest localization quality for the sector given
its computational budget, while meeting the latency constraint.

V. CONCLUSIONS

In this work, we present a novel approach to a self-adaptive
system for localization in autonomous driving cars. Our ap-



Sector #Particles #Threads Latency [ms] Utilization [%] Power [mWatt]
S0 400 4 24.70 2.8674 3939.3248
S1 500 4 23.40 3.0906 4148.2766
S2 200 1 20.98 1.0142 1989.8885
S3 500 4 24.15 3.0048 4111.0471

TABLE IV: Scenario II. In sector 2, the Particle Filter proac-
tively frees up three cores (budget = 1) while adjusting the
particle set size in each sector to meet the latency constraint

proach enables higher flexibility, and better resources optimiza-
tions with respect to traditional approaches, that don’t take into
account both application reconfigurability (in our test case, the
number of particles of a Particle Filter) and system utilization
at the same time. Our solution enables higher promptness
and reactiveness of the overall system to unexpected workload
variations, enabling safer driving, but it can also be adopted in
a proactive manner, to tune system utilization, for instance to
reduce power consumption ≈ 1.5×, in our experiments.

Our approach is semi-static, because it relies on pre-
computed performance tables. The next natural steps are to
explore a fully dynamic approach, where these performance/ac-
curacy profiles are updated on-the-fly while system is running,
and to analyze system composability of multiple adaptive
applications through their holistic orchestration and tuning.

Moreover, even if our approach can be quickly implemented
on other application components that exhibit “knobs” such as
particles number adjustment, it would be crucial to integrate
it with existing parallel programming models (the natural
candidate, in this case, could be OpenMP), to prove its widest
applicability in an application-independent manner.
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