
Interference analysis of shared last-level cache on
embedded GP-GPUs with multiple CUDA streams

Gianluca Brilli, Paolo Burgio
University of Modena and Reggio Emilia, Italy
{gianluca.brilli, paolo.burgio}@unimore.it

Abstract—In modern heterogeneous architectures, the access
to data that the application needs is a key factor, in order to
make the compute task efficient, in terms of power dissipation
and execution time. The new generation SoCs are equipped
with large LLCs, in order to make data access as efficient
as possible. However, these systems introduce a new level of
complexity in terms of the system’s predictability, because con-
current tasks must compete for the same resource and contribute
to generate interference between them. This paper aims to
provide a preliminary qualitative analysis in terms of interference
degree that is generated when several concurrent streams are
in execution, for example one that performs useful computing
tasks and one that generates interference. Specifically, we tested
two important primitives: vadd and gemm, respectively subjected
to interference with: i) a concurrent kernel that performs read
from shared memory. ii) concurrent stream that performs host-
to-device memory copy.

Index Terms—GP-GPUs, embedded systems, Real-Time sys-
tems, caches

I. INTRODUCTION, AND MOTIVATION FOR THIS WORK

The increasing demand for high-performance computational
capabilities at low size-weight and power (SWaP) of modern
embedded systems paved the way to the adoption of hetero-
geneous computing platforms with multi-core host and many-
core accelerators. Especially, integrated GPGPUs (iGPUs) [6],
[7] are today’s preferred to other acceleration paradigms,
e.g., based on FPGAs or application-specific integrated cir-
cuits (ASICs), in applications with data-parallel workloads,
such as computer vision and AI systems employing deep
neural networks. This is the case of advanced automotive
systems1, where AI/DNN are increasingly being adopted as
reference for building partly- or fully- automated vehicles of
tomorrow. Unfortunately, these systems demand not only for
high peek performance, but also –and especially– worst case
performance, and the increased architectural complexity of
modern iGPUs makes it extremely cumbersome to perform an
effective non-pessimistic worst-case timing analysis of system.
Recently, researchers [2], [4], [8] proved that the main source
of unpredictability in such systems are contentions on shared
resources, such as memory banks, but yet only few works [3]
focused on shared GPU last-level cache (LLC) which also
is a major source of contention, that affects both host and
accelerator complexes. The reason for this lack of material is

1Figure 1 shows a simplified block diagram of a NVIDIA TX2, where an
esa-core host shares memory banks with two CUDA streaming multiproces-
sors (SM) of the Pascal family.

that, hardware providers (in this case, NVIDIA) are too often
reluctant to disclose the internals of their highly-optimized
architectures and memory drivers, forcing researcher to a huge
effort of reverse engineering for understanding them [3]. This
is also interesting because last-level-caches are the closest
shared resources between cores, hence they are affected by the
whole memory traffic due to local caches misses, and deserve
a special attention.

Fig. 1. Reference iGPU architecture with key architectural bottlenecks

CUDA streams. One of the main performance booster,
when adopting a host-accelerator paradigm, is the possibility
of overlapping multiple computation kernels and data transfers
between the CPU and the GPU. In NVIDIA GPGPUs, this is
possible thanks to the abstraction of CUDA streams, where
both execution and data transfer request are issued from the
application control running on the host. Unfortunately for RT
engineers, CUDA streams introduce an additional level of
parallelism, further increasing system complexity, and we will
show how the complex mechanism for stream management
implemented in platform drivers enables an additional source
of contention in the system, negatively affecting predictabil-
ity, because they create interference not only on the shared
memory, but also on last-level cache. Circles with numbers in
Figure 1 highlight the two main contention points (LLC and
memory) in the considered system.

Platform modeling in industry. Another issue stems from
the fact that industrial-grade frameworks for software develop-
ment, such as Amalthea [1] for the automotive domain, too of-

ten rely on simplified platform model, practically inapplicable
and ineffective with the complex structure of iGPUs. Indeed,
there is no standard approach to modeling both the implicit
memory contention between host cores and GPU cores. Of
course, the situation gets even worse when CUDA streams are
included in the picture. Indeed, this year’s WATERS challenge
only focuses on single-stream applications.

Our work wants to be the first one in analyzing and mod-
eling, not only analytically but also with empirical evidence,
the contention on LLC introduced by the adoption of multiple
CUDA streams.

The rest of the paper is structured as follows: in section II,
we provide some ideas regarding the implementation of the
interference benchmarks and some expected results. Section
III shows the graphs obtained by running the experiments
described in Section II on top a representative embedded
iGPU, the NVIDIA Tegra X2 and details the results. Finally
in Section IV we summarize the experiments carried out in
this research and we conclude the paper.

II. IMPLEMENTATION DETAILS

In this section we provide some details related to the bench-
mark suite used in the experiments. In particular we decided
to measure the slowdown due to the interference on LLC on
two basic operations of Linear Algebra, respectively the sum
of vectors and the multiplication of matrices (vadd and gemm
). From the point of view of the experiments carried out, we
quantified the level of cache interference by measuring the
performance of the aforementioned kernels with and without
interference, in terms of execution time, because unfortunately
the metric l2 l1 read hit rate is not implemented on our
target platform. In this way we compared the execution times
of the two compute-kernels with and without interference.
The slowdown obtained, is obviously due to the LLC data
replacement and the consequent high cost of access to the
Shared Memory outside the chip.

In terms of benchmarks, we decided to test the following
two cases:

i) Compute Kernel and Interference Kernel: in this first test
case we performed a comparison between a compute kernel
running on a single Streaming Multiprocessor (SM) in isolation
(ie. without interference), compared to the same kernel in
a concurrent execution with a kernel that reads data from
memory, running on a parallel stream, mapped to the second
SM inside the Tegra X2 SoC.

1 w h i l e (r u n s −−) {
2 i d x = t h r e a d I d x . x * s t r i d e ;
3 w h i l e (i d x < n) {
4 w[i d x] = r [i d x] ;
5 i d x += blockDim . x ;
6 }
7 }

Listing 1. Interference kernel implementation.

In listing 1 we can see the simple idea behind the interfer-
ence kernel used in this work. In particular we can notice the
stride parameter, which determines the access pattern of the
threads to the LLC.

Fig. 2. Thread access pattern to LLC. The case reported in this figure is a
coalesced access, that we have when the stride is equal to 1. In this case only
the first thread causes a cache miss (the red cell).

In figure 2 we can see what happens inside the GPU
LLC from a graphical point of view, varying the stride. In
particular if it is less than the cache line size (< 32) we
expect the generated interference is ”relatively low”, because
some threads will perform cache hit on the LLC. Similarly,
by increasing this parameter beyond the LLC line size (> 32),
we experimented a similar behavior, in which some cache
lines will not be affected by the interference memory accesses.
Finally in the case of strided accesses of the same size as the
cache line (= 32), we have the maximum possible interference
that we can generate involving a single SM 2, then in this
last case, each thread could potentially perform a cache miss,
triggering a load from the main memory.

ii) Compute Kernel and Copy Engine: in this last compar-
ison we focused on the behavior generated by concurrently
launch a compute-kernel, running on top of one of the two
SMs, together with a concurrent CUDA-stream that takes care
of performing memory copy host-to-device, through the Copy
Engine. This type of copy, moves the target memory, which
is stored in an area addressable by the Host complex, inside a
region that is visible by the GPU, and also prefetches the data
needed on the GPU LLC, in order to bring this data closer to
the Compute Engines. Within our benchmarks, these memory
copies involve all or some parts of cache lines, in particular
the cache regions are kept under interference throughout the
computation time of the concurrent kernel.

1 w h i l e (r u n s −−) {
2 cudaMemcpyAsync (w gpu , r gpu , LINE SIZE *

c a c h e l i n e s , cudaMemcpyHostToDevice , s1) ;
3 c u d a S t r e a m S y n c h r o n i z e (s1) ;
4 }

Listing 2. Concurrent memory copy stream.

Listing 2 shows in detail the benchmark idea described
above. In particular we used the CudaMemcpyAsync, for
executing memory copy on top a concurrent stream, different
from the default one. Through the cache line parameter we
can control the number of cache lines under interference,
ranging from one single line up to the whole cache size.

2The maximum number of threads that can be launched in a block is
hardware-limited to 1024 threads, summing each dimension of the grid.

III. EXPERIMENTAL RESULTS

In this section we report the experimental results from two
kernels in isolation, compared to a concurrent execution with
the two aforementioned interference cases. The target comput-
ing platform is the NVIDIA Tegra X2 [6], a System-on-Chip
(SoC) that embeds an esa-core processor, in a Big.SUPER
configuration, composed of four ARMv8 Cortex A57 and
two proprietary NVIDIA Denver. The GPU is composed of
two Streaming Multiprocessors (SMs) belonging to the Pascal
family, summing up 256 CUDA Cores @ 854− 1465MHz in
total. As mentioned before, we used one SM to perform useful
computation and the other one for doing memory interference.
Regarding the memory hierarchy, we have 8 GB of LPDDR4,
shared between the CPU cluster and the GPU, with a bus width
of 128 bits and a bandwidth of 58.4 GB/s. Regarding the last
level cache system we have a L2 cache, shared between the
host complex and a L2 cache for the Pascal GPU, the second
one is composed of 16384 cache lines of size 32 bytes each,
summing up 512KB in total.

In figure 3 we can see a comparison of the execution time
needed by the vadd kernel, respectively with and without
interference. In particular from this first benchmark we exper-
imented an execution time of about 5 seconds for the baseline
version (without interference). Subsequently by launching the
interference kernel and varying the stride parameter we can
notice a linear growth in terms of execution time, until
reaching the dimension of the LLC line-size. In this case we
have reached the maximum number of possible cache misses
and the consequent loads from the main memory, which we
can generate with a single SM, composed of one CUDA block
of 1024 concurrent threads. The increase in execution time
experimented is proportional to a 6× factor from the baseline
version. Further increasing the stride parameter even beyond
the LLC line-size we have a reduction of the interference
factor, up to about 2× compared to the baseline version.
Specifically, we observed that the execution time seems to
converge towards a specific value. The decrease in execution
time is due to the fact that increasing the stride parameter
beyond the line size of the LLC, we are indeed skipping some
cache lines and consequently generating less interference.

In figure 4 we can see a comparison of the same compute
kernel, with a concurrent execution of a CUDA stream that
performs memory copy host-to-device, exploiting the Copy
Engine. The comparison is always measured in terms of
execution time and in this case it is carried out by gradually
increasing the number of cache lines affected by the memory
copy stream, ranging from a single cache line, up to 16384
cache lines (the full size of the LLC). In this case we have
an increase of about a 1.2× factor in the case of a single
cache line interfered, up to a factor of 2.4× when we have
interference on the whole cache.

The same test modalities are shown in figure 5 and 6,
in particular in figure 5 we can see the growth in terms
of execution time due to the interference generated by the
concurrent kernel in execution on the second SM. Also in this

case we can notice a linear growth of the execution time, by
increasing the stride parameter, until we reach the line-size of
the LLC (32-bytes). In case of the gemm task we have an
increase of about a 3× factor of the execution time respect
to the baseline reference. Beyond this point, also in this case,
follows a decrease in the total execution time, until reaching
a fixed value, similar to the baseline case.

Finally in the last proposed comparison, shown in figure 6,
we note that the effect of interference due to memory copy
host-to-device does not have a particularly interference impact
on the total execution time, unlike what happens in the case
of concurrent kernels.

IV. CONCLUSION

In this paper we presented, through a sequence of bench-
marks, some interference effects on Last-Level Cache (LLC),
due to the execution of an interference kernel, mapped on
a concurrent Streaming Multiprocessor (SM) and by means
of memory copy host-to-device. The tests were carried out
on a device that nowadays can be considered as the state
of the art regarding high performance iGPU, the NVIDIA
Tegra X2 SoC. Through the analysis of the results obtained
we were able to infer the size of the single cache line, a
fundamental parameter to be known if we intend to develop
embedded software that makes efficient use of caches. We
also highlighted that interference on LLC, in case of kernels
running on separate SMs, has a very high impact on the
number of accesses to the main memory, which translates into
i) a considerable increase in total execution time, equal to a
factor of about 6× in the case of the vadd and about 3× for
the gemm. ii) difficulty in making predictable the worst-case
execution time (WCET). This justifies and supports the need
for adopting predictable models, in which several tasks must
synchronize the memory access phases.

REFERENCES

[1] Amalthea Consortium. Amalthea. model based open source development
environment for automotive multi core systems, 2014.

[2] R. Cavicchioli, N. Capodieci, and M. Bertogna. Memory interference
characterization between CPU cores and integrated gpus in mixed-
criticality platforms. In 22nd IEEE International Conference on Emerging
Technologies and Factory Automation, ETFA 2017, Limassol, Cyprus,
September 12-15, 2017, pages 1–10, 2017.

[3] B. Forsberg, L. Benini, and A. Marongiu. Taming data caches for
predictable execution on gpu-based socs. In DATE19 to appear, 2019.

[4] R. Mancuso, R. Pellizzoni, N. Tokcan, and M. Caccamo. WCET
derivation under single core equivalence with explicit memory budget
assignment. In 29th Euromicro Conference on Real-Time Systems, ECRTS
2017, June 27-30, 2017, Dubrovnik, Croatia, pages 3:1–3:23, 2017.

[5] X. Mei and X. Chu. Dissecting gpu memory hierarchy through mi-
crobenchmarking. 2017.

[6] NVIDIA. Jetson TX2 Module, 2017.
[7] NVIDIA. Jetson AGX Xavier Developer Kit, 2018.
[8] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. Memory

bandwidth management for efficient performance isolation in multi-core
platforms. IEEE Trans. Computers, 65(2):562–576, 2016.

Fig. 3. Comparison in terms of execution time of the vadd kernel in isolation (red bar), compared to the same kernel running concurrently with an interference
kernel (blue bars).

Fig. 4. Comparison in terms of execution time, between the vadd kernel in isolation (the red bar) and the same kernel in execution with a concurrent stream
that performs memory copy host-to-device (the blue bars).

Fig. 5. Comparison in terms of execution time of the gemm kernel in isolation (red bar), compared to the same kernel running concurrently with an interference
kernel (blue bars).

Fig. 6. Comparison in terms of execution time, between the gemm kernel in isolation (the red bar) and the same kernel in execution with a concurrent stream
that performs memory copy host-to-device (the blue bars).

